
Automated Modeling of I/O Performance and
Interference Effects in Virtualized Storage Systems

Qais Noorshams∗, Axel Busch∗, Andreas Rentschler∗, Dominik Bruhn∗, Samuel Kounev∗, Petr Tůma†, Ralf Reussner∗
∗Karlsruhe Institute of Technology, Germany (e-mail: [lastname]@kit.edu)

†Charles University in Prague, Czech Republic (e-mail: tuma@d3s.mff.cuni.cz)

Abstract—Modern IT systems frequently employ virtualization
technology to maximize resource efficiency. By sharing phys-
ical resources, however, the virtualized storage used in such
environments can quickly become a bottleneck. Performance
modeling and evaluation techniques applied prior to system
deployment help to avoid performance issues. In current practice,
however, modeling I/O performance is usually avoided due to the
increasing complexity of modern virtualized storage systems. In
this paper, we present an automated modeling approach based on
statistical regression techniques to analyze I/O performance and
interference effects in the context of virtualized storage systems.
We demonstrate our approach in three case studies creating
performance models with two I/O benchmarks. The case studies
are conducted in a real-world environment based on IBM System
z and IBM DS8700 server hardware. Using our approach, we
effectively create performance models with excellent prediction
accuracy for both I/O-intensive applications and I/O performance
interference effects with a mean prediction error up to 7%.

Postprint version. To be published in Proceedings of the 34th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS 2014
Workshops). 4th International Workshop on Data Center Performance, DCPerf ’14, Madrid, Spain, 2014.

I. INTRODUCTION

Over the past decades, the I/O resource demands of modern IT
systems have increased exponentially [1]. Many I/O-intensive
applications, such as video streaming portals, online file storage
services, and social networking applications, are increasingly
often deployed in virtualized environments to exploit efficiency
benefits. Sharing physical resources in such scenarios requires
explicit analysis techniques of I/O performance and interference
effects to avoid performance bottlenecks during operation.

In current practice, however, virtualized storage and its
performance-influencing factors are often neglected or treated
as a black-box due to their complexity. Several explicit
modeling approaches considering I/O-intensive applications
in virtualized environments have been proposed, e.g., [2] and
our previous work in [3], which has shown, however, that such
manual performance modeling approaches require a significant
amount of time and expertise.

In this paper, we present a fully automated modeling
approach to analyze I/O performance and interference effects in
the context of virtualized storage systems based on three statisti-
cal regression techniques. Our goal is to maximize the practical
usability for such models and to minimize the manual effort
to create them. We demonstrate the benefit of our approach
in three case studies creating performance models using two
different I/O benchmarks. The case studies comprise models
of general I/O performance-influencing factors, of mixed
application workloads, and of I/O performance interference
effects in mixed virtualized environments. The case studies are

conducted in a real-world environment based on IBM System
z and IBM DS8700 server hardware. Using our approach, we
effectively create performance models with excellent prediction
accuracy. Using the best regression technique, the mean
prediction error is between 2.1% and 7% in the case studies.

In summary, the contribution of this paper is two-fold:
i) We present a framework for automated modeling of I/O
performance and interference effects in virtualized storage
systems. ii) We demonstrate our approach in three case studies
with two different benchmarks in a real-world environment
based on the state-of-the-art server technology of the IBM
System z and IBM DS8700. We extend our previous work [4]
by i) presenting the architecture of our automation and by ii)
evaluating our approach in two new case studies including
the extraction of performance models for I/O performance
interference effects in a heterogeneous, multi-VM scenario.

This paper is organized as follows: Section II presents our
methodology. In Section III, we illustrate the design of our
automation. An extensive evaluation of our approach in three
case studies is given in Section IV. Finally, Section V reviews
related work and Section VI concludes the paper.

II. METHODOLOGY

To systematically create performance models of virtualized
storage systems, we identify a general process (cf. Figure 1):
1. Modeling Target Specification
First, the system environment as well as the main modeling
goals are specified, e.g., evaluating performance-influencing
factors or analyzing performance interference effects.

2. Measurement Space Configuration
Depending on the goals and the system environment, the
measurement configuration (or parameter space) is defined.
This is used to perform the measurements in the next step, and
based on it, the independent variables used in the following
steps are determined.

3. Systematic Measurements
After the measurement space and the scenario are identified,
the measurement space is explored by performing systematic
measurements. The measurement metrics (e.g., response time
and throughput) are used as dependent variables in the
following steps.

4. Regression Optimization
Regression techniques are used to model the effect of the
independent variables on the dependent variables. Since the



optimal parameterization of regression techniques is usually
scenario dependent, we use the measurement data to optimally
tune the regression techniques for the specific scenario.

5. Regression-based Performance Modeling
Finally, the performance models are created using multiple
regression techniques, where a model is created for each
dependent variable. The models can be compared to choose
the best model for the scenario.
Steps 3 – 5 are fully automated and are only briefly

elaborated in the following due to space constraints. More
details can be found in [4].

A. Systematic Measurements

In a virtualized storage environment, a wide variety of
performance-influencing factors exists, cf. [5]. To evaluate the
factors, we support multiple scenarios based on different bench-
marks. A first scenario is applying fine-grained measurements
to evaluate the impact of the factors on the performance. This
allows to create a performance model of the system environment
with fine-grained configuration aspects. A second scenario is
analyzing mixed application workloads. This allows to evaluate
the system environment in typical scenarios and to create a
performance model, e.g., to predict the effect of workload
scaling when the number of users increases. Finally, we also
consider combinations of both to analyze interference effects
on co-located virtual machines (VMs). For each scenario, the
parameter space is then fully explored to extract a system
profile with systematic measurements, which are used for
performance modeling. We demonstrate each of the three
scenarios in Section IV.

B. Regression Optimization

Regression techniques usually have configuration parameters
(e.g., the maximum number of modeling terms) that influence
their effectiveness in a certain application scenario. To optimally
tune the regression techniques, i.e., find the best configuration
parameters for a given scenario, we apply a heuristic search
algorithm (introduced in [4]). For given data, we iteratively
search for best fitting regression parameters that minimize the
average root mean square error of a 10-fold cross-validation.

C. Regression-based Performance Modeling

In the following, we briefly introduce the three regression
techniques considered in this paper.

1) Multivariate Adaptive Regressions Splines (MARS) [6]
consist of piecewise linear functions, so-called hinge functions
hi. Thus, MARS constructs a model f of the form f(~x) =
β0+

∑n
i=1 βi hi(~x) with coefficients β0, . . . , βn. In this paper,

we consider MARS with interaction terms, which includes
terms that are a product of one or more hinge functions.

2) Classification and Regression Trees (CART) [7] are binary
decision trees with conditions in their non-leaf nodes and
constant values in their leaf nodes. To determine the value of
the dependant variable corresponding to a set of values of the
independent variables, the evaluation starts at the root and the
condition in this node is checked. If the condition is true, the

Modeling Target 
Specification

Systematic 
Measurements

Measurement Space 
Configuration

Regression-based 
Performance Modeling

Regression 
Optimization

Independent 
Variables

(Configuration)

Dependent 
Variables 

(Measurements)
Optimal 

Regression 
Parameters

Automated

Fig. 1: Performance Modeling Process (dashed: data flow)

left edge is followed, otherwise the right edge. This is repeated
until a leaf is reached.

3) Cubist forests [8], [9] are based on M5 trees [10], which
are binary decision trees with conditions in their non-leaf nodes
and linear regression models in their leaf nodes. Compared
to M5, Cubist introduces two extensions. First, it follows a
boosting-like approach, i.e., it creates a set of trees instead of
a single tree. Second, it combines model-based and instance-
based learning, i.e., it can adjust the prediction of unseen points
by the values of their nearest training points.

III. AUTOMATION DESIGN

Our methodology is automated as part of our Storage Per-
formance Analyzer (SPA) framework1. Next, we present the
high-level design and the components of SPA.

A. High-level Architecture
Illustrated in Figure 2, our SPA framework basically consists
of a benchmark harness that coordinates and controls the
execution of benchmarks and a tailored analysis library used
to process and evaluate the collected measurements. The
benchmark harness runs on a controller machine managing the
measurement process. Using SSH connections, the benchmark
controller first configures the benchmark, then it executes the
target workload, and it finally collects the results into an SQLite
database. The benchmark controller guarantees a synchronized
execution of experiments on multiple targets, i.e., on multiple
VMs that can be deployed on the same system. Currently, we
have integrated two benchmarks into our framework. We use
the open source Flexible File System Benchmark2 (FFSB) for a
fine-grained analysis and the Filebench benchmark3 to emulate
mixed application workloads, e.g., a file server workload. The
evaluation is automated using analysis functions implemented
using the open source statistics tool R [11]. The analysis
library comprises the analysis, optimization and regression
functions we created and applied for regression optimization
and performance modeling, cf. Section II-B and II-C.

1http://sdqweb.ipd.kit.edu/wiki/SPA
2https://github.com/FFSB-prime (extension of http://ffsb.sf.net)
3https://github.com/Filebench-Revise (includes fixes)



B. Components

Basically, our framework comprises a composite benchmarking
component, a composite performance modeling component, and
a persistence component that serves as an interface between
the former two components.

The benchmarking component realized in Java contains a
benchmark controller that explores the parameter space and
coordinates the benchmark runs accordingly. The benchmark
controller is connected to the benchmark driver, which is used
to configure and execute the benchmark. The benchmark driver
uses an internal remote execution component to communicate
with the actual benchmark, which is deployed on the target
system. In our implementation, the remote execution component
employs SSH connections, but it could be easily changed to
use another connection type. The benchmark controller saves
the measurement results using the persistence component.

The performance modeling component is integrated into R.
The datastore interface can load and prepare the measurement
data, e.g., by filtering irrelevant data. Both the regression
optimization and the regression modeling component can further
process this data or use other data specified by the user. The
regression optimization component comprises the optimization
algorithm outlined in Section II-B and uses the regression
techniques whose implementations are provided by R libraries.
The regression modeling component automatically creates the
models with the considered regression techniques.

IV. CASE STUDY

In this section, we present three case studies demonstrating
our approach in different scenarios.

A. System Under Study

In our case studies, we consider a representative virtualized
environment based on the IBM mainframe System z and the
storage system DS8700. The System z combined with the
DS8700 represents a high-end virtualized environment that can
be used as a building block of private cloud infrastructures.
The System z provides processors and memory, whereas the
DS8700 provides storage space.

The System z supports special Linux ports for System z
commonly denoted as z/Linux. The System z is connected to
the DS8700 via fibre channel. In the DS8700, storage requests
are handled by a storage server containing a volatile cache (VC)
and a non-volatile cache (NVC). The storage server is connected
via switched fibre channel to SSD- or HDD-based RAID arrays.
Furthermore, the storage server applies several pre-fetching
and destaging algorithms for optimal performance [12].

In our experimental environment, the DS8700 contains 2 GB
NVC and 50 GB VC with a RAID5 array containing seven
HDDs and measurements are obtained in z/Linux VMs with
ext4 file system and, unless specified otherwise, NOOP I/O
scheduler as it has recently been used as default scheduler
in virtualized environments [13]. We focus the measurements
on the storage performance using POSIX configuration and
explicitly take into account the cache of the storage system by
varying the overall size of data accessed in our workloads.

Analysis Library

Benchmark Harness

Benchmark
Controller

Benchmark
Driver

DataStore 
Interface

Persistence 
Component

Regression 
Modeling

Regression 
Optimization

Regression 
Techniques

Benchmarking
Component

Performance Modeling
Component

Remote 
Execution

R Libraries

SQLite

Benchmark
Benchmark

Fig. 2: Framework Architecture and Components

TABLE I: FFSB Experimental Setup Configuration

I/O scheduler CFQ, NOOP
Threads 100
File set size 1 GB, 25 GB, 50 GB, 75 GB, 100 GB
Request size 4 KB, 8 KB, 12 KB, 16 KB, 20 KB, 24 KB, 28 KB, 32 KB
Access pattern random, sequential
Read percentage 0%, 25%, 30%, 50%, 70%, 75%, 100%

MARS CART Cubist

0

10

20

30

0

10

20

30

M
ean

95th
percentile

RT r
RTw

TP r TPw RT r
RTw

TP r TPw RT r
RTw

TP r TPw

R
el

at
iv

e
E

rr
or

(%
)

Fig. 3: Prediction Quality (Case Study I)
B. Modeling Performance Factors

Setup. In our first case study, we use FFSB to systematically
benchmark the system environment and major performance-
influencing parameters. The detailed setup configuration is
chosen representatively and shown in Table I. The parameter
space is fully explored leading to a total of 1120 measurement
configurations. For each configuration, we configure a one
minute warm up and a five minute measurement phase. The
measurement phase consists of five intervals of one minute
length each. In one minute, the benchmark obtains ∼575 000
measurement samples on average and between ∼90 000 and
2 800 000 measurement samples depending on the configuration,
while the mean response times of read and write requests are
in [2.2 ms, 70.4 ms] and [2.8 ms, 60.7 ms], respectively, and
the throughputs of read and write requests are in [4.02 MB/s,
386.70 MB/s] and [2.99 MB/s, 171.1 MB/s], respectively.

Performance Models. For each regression technique we
create four different models: A read response time model



(RTr), a write response time model (RTw), a read throughput
model (TPr), and a write throughput model (TPw).

Prediction Accuracy. We evaluate 100 configuration scenar-
ios with parameter values chosen completely randomly within
the configured ranges (e.g., 80 GB file set size, 30 KB request
size and so on). For each scenario, we compare the model
predictions with measurements on the real system.

Figure 3 shows the mean and the 95th percentile, i.e., the
value below which 95% of the prediction errors fall, of the
relative error for the various models. Overall, the models
perform very well and especially MARS and Cubist exhibit
excellent prediction accuracy with less than 7% and 8% error,
respectively. The CART trees are highly splitted due to the
parameter tuning step, yet with ∼10% mean error their accuracy
is acceptable. Across the four models, the mean of the 95th
percentile of the prediction error is 20.89%, 24.32%, and
27.48% for MARS, Cubist, and CART, respectively.

Optimization Improvement. Finally, to evaluate the improve-
ments in model accuracy achieved through our regression
optimization step, we compare the accuracy of the models
when using the optimized regression parameters vs. the
standard parameters, respectively. We evaluate the performance
prediction error for each model with 100 completely random
configurations within the configured ranges.

Overall, especially MARS and CART benefit from the
parameter optimization exhibiting an average error reduction
of 66.30% and 74.08%, respectively. The error reduction for
Cubist is 15.7%. We evaluate the statistical significance of the
optimization results in a paired t-test. Here, the p-value of
both MARS and CART is less than 2.2e−16 and the p-value
of Cubist is 3.39e−4, thus, confirming that the optimization is
statistically significant.

C. Modeling Mixed Applications

Setup. In our second case study, we use Filebench to emulate
a composite application workload. We use the configuration
shown in Table II emulating a mail server workload consisting
of mixed file system operations, such as file creation and
deletion as well as whole file reads and append operations
of random size. We analyze all combinations of varying the
number of clients (threads), the number of files, and the mean
file sizes as summarized in Table II, leading to a total of 576
measurement configurations. For each configuration, we use
a one minute warm up phase and a five minute measurement
phase. During the latter, the benchmark obtains ∼980 000
read and append samples on average and between ∼825 000
and 1 100 000 samples depending on the configuration, while
the mean response times of read and append requests are in
[0.36 ms, 2.74 ms] and [0.40 ms, 1.70 ms], respectively, and
the throughputs of read and append requests are in [5.95 MB/s,
62.95 MB/s] and [5.60 MB/s, 7.60 MB/s], respectively.

Performance Models. For each regression technique we
create four different models: A read response time model (RTr),
an append response time model (RTa), a read throughput model
(TPr), and an append throughput model (TPa).

TABLE II: Filebench Experimental Setup Configuration

Workload type Mail server workload
Threads 16(∗), 32, 48, 64, 80, 96
Files 1000(∗), 5000, 10000, 20000, 30000, 40000, 50000,

60000, 70000, 80000, 90000, 100000
Mean file size 4 KB, 16 KB(∗), 32 KB, 48 KB, 64 KB, 96 KB, 128 KB,

192 KB
(∗) default value

MARS CART Cubist

0
10
20
30
40
50

0
10
20
30
40
50

M
ean

95th
percentile

RT r
RT a

TP r TP a RT r
RT a

TP r TP a RT r
RT a

TP r TP a

R
el

at
iv

e
E

rr
or

(%
)

Fig. 4: Prediction Quality (Case Study II)
Prediction Accuracy. We evaluate 100 configuration scenarios

with parameter values chosen randomly within the configured
ranges. For each scenario, we compare the model predictions
with measurements on the real system.

Figure 4 shows the mean and the 95th percentile of the
relative error for the various models. Overall, the models
perform very well and especially MARS exhibits excellent
performance prediction accuracy with less than 4% mean error.
The Cubist and CART models are also very accurate with ∼7%
and 8% mean prediction error, respectively. Across the four
models, the mean of the 95th percentile of the prediction error
is very good for MARS with 9.66%, while it is 20.78% and
20.88% for Cubist and CART, respectively.

Optimization Improvement. We evaluate the improvements in
model accuracy achieved through our regression optimization
step, similar as in the previous case study. Overall, the
optimization reduces the prediction error by 4.2%, 27.3%, and
8.7% for MARS, CART, and Cubist, repectively. In a paired
t-test, the p-value of MARS, CART, and Cubist is 5.26e−4,
9.63e−14, and 2.19e−3, respectively. Thus, the optimization is
again statistically significant.

D. Modeling Performance Interference
Setup. In our third case study, we analyze the performance
interference among VMs, i.e., the performance of a workload
in a given VM as a function of the workload running in
a co-located VM. We explicitly focus on machines with
a constant and equal workload intensity, but with different
workload types, e.g., read- or write-intensive workload. Since
I/O performance isolation in virtualized environments is widely
an open challenge, varying the workload intensity would lead
to obvious performance interference. For the measurements,
we use both FFSB as well as Filebench emulating a file server
workload consisting of mixed file system operations, such as
file creation and deletion as well as whole file reads, whole file
writes, and append operations of random size. The benchmarks
run in respective virtual machines with the configurations



chosen representatively and shown in Table III. We use all
combinations shown leading to a total of 200 measurement
configurations. We use a one minute warm up phase and a five
minute measurement phase.

A first indication of the performance interference is the
number of read, append, and write operations of the file server
workload emulated with Filebench in VM1. Depending on
the configuration of FFSB in VM2, the number of operations
in VM1 varies between ∼375 000 and 700 000 with a mean
of ∼550 000 operations, while the number of operations in
VM2 varies between ∼420 000 and 3 100 000 with a mean of
∼1 300 000 operations. For VM1, the mean response times of
read, append, and write requests are in [13.08 ms, 34.08 ms],
[11.63 ms, 32.12 ms], and [17.90 ms, 52.81 ms], respectively,
and the throughputs of read, append, and write requests are
in [54.80 MB/s, 108.30 MB/s], [3.40 MB/s, 6.20 MB/s], and
[55.30 MB/s, 109.10 MB/s], respectively, depending on the
configuration. For VM2, the mean response times of read
and write requests are in [4.34 ms, 26.75 ms] and [7.45 ms,
37.59 ms], respectively, and the throughputs of read and write
requests are in [1.38 MB/s, 218.00 MB/s] and [2.21 MB/s,
95.20 MB/s], respectively, depending on the configuration.

Performance Models. To model the interference effects, for
each regression technique, we create a total of 10 models:
For VM1, we use the configuration in VM2 as independent
variables and create a read response time model (RT1

r), an
append response time model (RT1

a), a write response time
model (RT1

w), a read throughput model (TP1
r), an append

throughput model (TP1
a), and a write throughput model (TP1

w).
For VM2, we do not need to use the configuration in VM1 as
independent variables explicitly as the configuration in VM1
remains constant in this case study. We create a read response
time model (RT2

r), a write response time model (RT2
w), a read

throughput model (TP2
r), and a write throughput model (TP2

w)
using the configuration in VM2 as independent variables.

Prediction Accuracy. We evaluate 100 configuration scenarios
with parameter values chosen randomly within the configured
ranges. We use these parameter values as configuration for
the FFSB benchmark and predict both the performance of the
FFSB benchmark and the performance interference on the co-
located VM running Filebench. For each scenario, we compare
the model predictions with measurements on the real system.

Figure 5 and 6 show the mean and the 95th percentile of the
relative error for the various models. Especially interesting is
the prediction error indicated in Figure 5 showing how the mod-
els are able to predict very accurately how different workloads,
e.g., write-intensive or read-intensive, affect the performance
on the co-located virtual machine. This is significant since, as
mentioned above, the response time spreads between 261% and
295% for the operations depending on the co-located workload.

Overall, the models perform significantly well for both virtual
machines. As before, MARS exhibits the best performance
prediction accuracy with ∼2.1% and 5.0% mean prediction
error for VM1 and VM2, respectively. The Cubist models are
also very accurate with ∼2.6% and 10.0% mean prediction
error for VM1 and VM2, respectively. Finally, CART models

TABLE III: Hybrid Experimental Setup Configuration

Filebench Workload Parameters @VM1

Workload type File server workload
Threads 50(∗)

Files 10000(∗)

Mean file size 128 KB(∗)

FFSB Workload Parameters @VM2

Threads 50
File set size 1 GB, 2 GB, 5 GB, 10 GB
Request size 4 KB, 8 KB, 16 KB, 32 KB, 64 KB
Access pattern random, sequential
Read percentage 10%, 30%, 50%, 70%, 90%

(∗) default value

MARS CART Cubist

0
5

10
15
20

0
5

10
15
20

M
ean

95th
percentile

RT
1
r
RT
1
a
RT
1
wTP

1
r
TP
1
a
TP
1
w RT

1
r
RT
1
a
RT
1
wTP

1
r
TP
1
a
TP
1
w RT

1
r
RT
1
a
RT
1
wTP

1
r
TP
1
a
TP
1
w

R
el

at
iv

e
E

rr
or

(%
)

Fig. 5: Prediction Quality VM1 (Case Study III)

MARS CART Cubist

0

20

40

60

0

20

40

60

M
ean

95th
percentile

RT
2
r
RT
2
wTP

2
r
TP
2
w RT

2
r
RT
2
wTP

2
r
TP
2
w RT

2
r
RT
2
wTP

2
r
TP
2
w

R
el

at
iv

e
E

rr
or

(%
)

Fig. 6: Prediction Quality VM2 (Case Study III)
exhibit the highest error in this case study with ∼5.2% and
13.5% mean prediction error for VM1 and VM2, respectively.
For VM1, the mean of the 95th percentile of the prediction error
across the six models is very good for MARS and Cubist with
8.39% and 9.99%, respectively, while it is 15.14% for CART.
For VM2, the mean of the 95th percentile of the prediction
error across the four models is 16.15%, 27.39%, and 34.00%
for MARS, Cubist, and CART, respectively.

Optimization Improvement. We again evaluate the improve-
ments in model accuracy achieved through our regression
optimization step, similar as in the previous case studies. In
summary, the optimization improvement is between 5.0% and
32.3% and the p-value is at most 1.46e−3 indicating that the
optimization is statistically significant.

V. RELATED WORK

The work closely related to the approach presented in this paper
can be classified into two groups. The first group is focused
on modeling storage performance in virtualized environments.
Here, Kraft et al. [2] present two approaches based on queueing



theory to predict the I/O performance of consolidated virtual
machines. Their first, trace-based approach simulates the
consolidation of homogeneous workloads. The environment
is modeled as a single queue with multiple servers having
service times fitted to a Markovian Arrival Process (MAP).
In their second approach, they predict storage performance in
consolidation scenarios with heterogeneous workloads. They
create linear estimators based on mean value analysis (MVA).
Furthermore, they create a closed queueing network model, also
with service times fitted to a MAP. In [14], Ahmad et al. analyze
the I/O performance in VMware’s ESX Server virtualization.
They compare virtual to native performance using benchmarks.
They further create mathematical models for the virtualization
overhead. The models are used for I/O throughput degradation
predictions. By applying different machine learning techniques,
Kundu et al. [15] use artificial neural networks and support
vector machines for dynamic capacity planning in virtualized
environments.

The second group of related work analyzes I/O performance
interference effects in virtualized environments. Closest to
our work, Chiang et al. [16] use linear and second degree
polynomials to model I/O performance interference. They
use the models for scheduling algorithms to manage task
assignments in virtualized environments. As input in their
model, they use read and write request arrival rates as well
as local and global CPU utilization. However, they do not
distinguish between request sizes or sequential and random
requests, for instance. Our measurements have shown that such
factors have a significant impact on I/O performance. In [17],
Yang et al. present a framework that uses a set of pre-defined
workloads to identify characteristics of the hypervisor I/O
scheduler. Furthermore, they show how this information can
be exploited to deteriorate the I/O performance of co-located
virtual machines. To analyze performance interference also
across resources, Koh et al. [18] manually run CPU-bound and
I/O-bound benchmarks. They develop mathematical models
for prediction of normalized performance compared to the
isolated performance of the benchmark. In an experimental
study, Pu et al. [19] analyze CPU and network I/O performance
interference in a Xen-based environment. They conclude that
the least performance degradation occurs for workloads with
different resource demands, i.e., CPU and network I/O demand
or mixing small with large network demands.

VI. CONCLUSION

We presented a fully automated approach to systematically
create and optimize I/O performance models of virtualized
storage systems based on three statistical regression techniques.
We demonstrated the benefit of our approach in three case
studies creating performance models with two different I/O
benchmarks. The case studies comprised models of general
I/O performance-influencing factors, of mixed applications
workloads, and of I/O performance interference effects in mixed
virtualized environments. The case studies were conducted
in a real-world environment based on IBM System z and
IBM DS8700 server hardware. Overall, we effectively created

performance models with excellent prediction accuracy. Inter-
estingly, of the three considered regression techniques, MARS
performed better than CART and Cubist in every scenario. The
mean prediction error of MARS was between 2.1% and 7%
in the case studies. This fact, however, was also due to the
regression parameter optimization approach reducing the error
of MARS by up to 66.3%. Moreover, the regression parameter
optimization approach reduced the prediction error of every
considered technique with statistical significance in every case
study and every regression technique considered in the paper.
Acknowledgments This work was supported by the German Research Foundation
(DFG) under grant No. RE 1674/5-1 and KO 3445/6-1, the Czech Science Foundation
(project GACR P202/10/J042), and the German Federal Ministry of Economics and
Energy (BMWI), grant No. 01MD11005 (PeerEnergyCloud). We especially thank
the Informatics Innovation Center (IIC) – http://www.iic.kit.edu/ – for
providing the system environment of the IBM System z and the IBM DS8700.

REFERENCES

[1] S. Oliveira, K. Furlinger, and D. Kranzlmuller, “Trends in Computation,
Communication and Storage and the Consequences for Data-intensive
Science,” in HPCC-ICESS’12.

[2] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick,
“Performance Models of Storage Contention in Cloud Environments,”
SoSyM, 2012.

[3] Q. Noorshams, K. Rostami, S. Kounev, P. Tůma, and R. Reussner, “I/O
Performance Modeling of Virtualized Storage Systems,” in MASCOTS

’13.
[4] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive

Performance Modeling of Virtualized Storage Systems using Optimized
Statistical Regression Techniques,” in ICPE ’13.

[5] Q. Noorshams, S. Kounev, and R. Reussner, “Experimental Evaluation
of the Performance-Influencing Factors of Virtualized Storage Systems,”
in EPEW ’12.

[6] J. H. Friedman, “Multivariate Adaptive Regression Splines,” Annals of
Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification
and Regression Trees, ser. The Wadsworth and Brooks-Cole statistics-
probability series. Chapman & Hall, 1984.

[8] RuleQuest Research Pty Ltd, “Data Mining with Cubist,” http://rulequest.
com/cubist-info.html, 2012, last accessed: Jan 2014.

[9] M. Kuhn, S. Witson, C. Keefer, and N. Coulter, “Cubist Models
for Regression,” http://cran.r-project.org/web/packages/Cubist/vignettes/
cubist.pdf, 2012, last accessed: Jan 2014.

[10] J. R. Quinlan, “Learning with Continuous Classes,” in AI ’92. World
Scientific.

[11] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2013. [Online].
Available: http://www.R-project.org

[12] B. Dufrasne, W. Bauer, B. Careaga, J. Myyrrylainen, A. Rainero, and
P. Usong, “IBM System Storage DS8700 Architecture and Implementa-
tion,” http://www.redbooks.ibm.com/abstracts/sg248786.html, 2010.

[13] X. Ling, S. Ibrahim, H. Jin, S. Wu, and T. Songqiao, “Exploiting Spatial
Locality to Improve Disk Efficiency in Virtualized Environments,” in
MASCOTS ’13.

[14] I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija, “An
Analysis of Disk Performance in VMware ESX Server Virtual Machines,”
in WWC-6, 2003.

[15] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling
Virtualized Applications using Machine Learning Techniques,” in VEE
’12.

[16] R. C. Chiang and H. H. Huang, “TRACON: Interference-aware Schedul-
ing for Data-intensive Applications in Virtualized Environments,” in SC

’11.
[17] Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. Huang, “Under-

standing the Effects of Hypervisor I/O Scheduling for Virtual Machine
Performance Interference,” in CloudCom ’12.

[18] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
Analysis of Performance Interference Effects in Virtual Environments,”
in ISPASS ’07.

[19] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understand-
ing Performance Interference of I/O Workload in Virtualized Cloud
Environments,” in CLOUD ’10.


