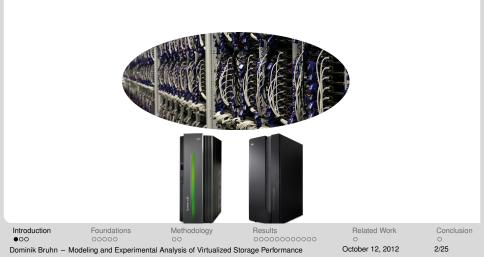
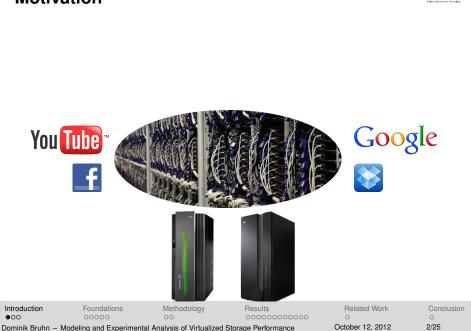

October 12, 2012

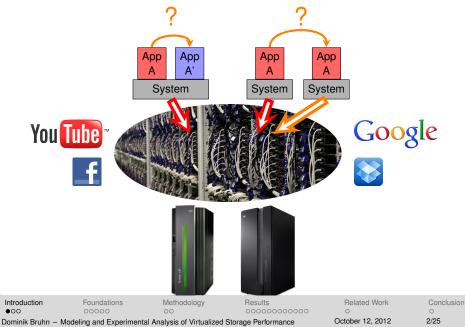
Modeling and Experimental Analysis of Virtualized Storage Performance using IBM System z as Example

Diploma Thesis Presentation Dominik Bruhn

Reviewers: Prof. Dr. Ralf H. Reussner, Prof. Dr. Walter F. Tichy Advisors: Qais Noorshams, Dr. Samuel Kounev


CHAIR FOR SOFTWARE DESIGN AND QUALITY





Problem & Idea & Benefit & Action

Problem

- Complex systems with many layers
- Difficulty to obtain good performance prediction models

Idea

Derivation of storage performance models from systematic measurements using regression techniques

Benefit

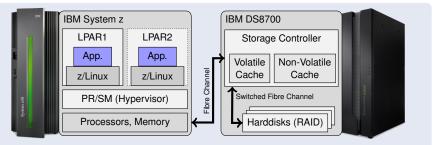
- Possibility to predict the performance
- Easier decisions on configurations and systems

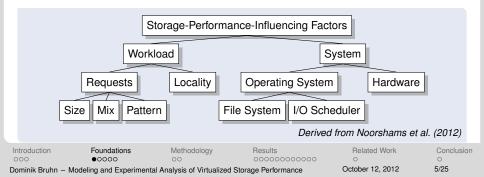
Action

- Creation and evaluation of performance models
- Evaluation of techniques and optimization possibilites

Introduction	Foundations	Methodology	Results 000000000000	Related Work	Conclusion O
Dominik Bruhn – Moo	deling and Experimenta	October 12, 2012	3/25		

Contribution

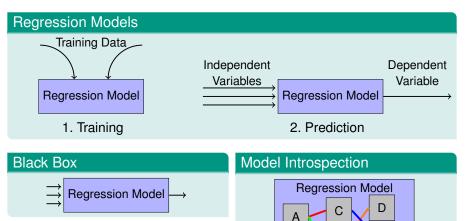



Contribution

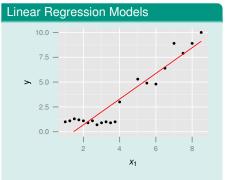
- Creation and evaluation of regression models for storage performance prediction
- Evaluation, analysis and comparison of regression techniques valid for storage performance prediction
- Repeatable process validated in a representative real-world environment

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	00000	00	00000000000	0	0
Dominik Bruhn -	Modeling and Experiment	October 12, 2012	4/25		

System Under Study

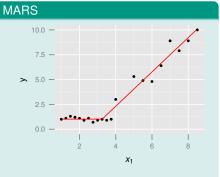


Modeling


Dominik Bruhn – Mo	deling and Experiment	October 12, 2012	6/25		
000	00000	00	00000000000	0	0
Introduction	Foundations	Methodology	Results	Related Work	Conclusion

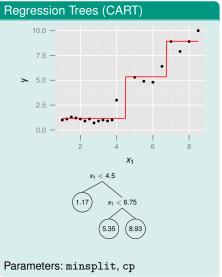
В

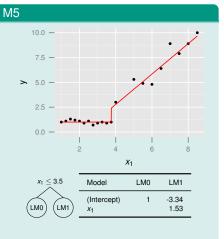
Е


Regression Techniques

 $y = -1.884 + 1.293x_1$

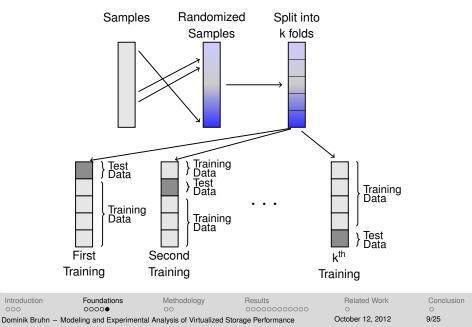
Parameters: None




 $y = 1.014501 + 1.72866h(x_1 - 3.25)$ Parameters: nk, threshold

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	0000	00	00000000000	0	0
Dominik Bruhn – I	Dominik Bruhn – Modeling and Experimental Analysis of Virtualized Storage Performance				7/25

Regression Techniques



Parameter: nsplits

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	00000	00	00000000000	0	0
Dominik Bruhn -	Modeling and Experiment	October 12, 2012	8/25		

Cross-Validation

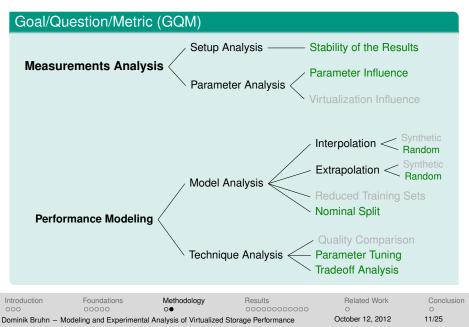
Experimental Setup

Workload

System Parameters	5			
File system	ext4			
I/O scheduler	CFQ, NOOP			
Workload Parameters				
Threads	100			
File set size	1 GB, 25 GB, 50 GB,			
	75 GB, 100 GB			
Request size	4 KB, 8 KB, 12 KB,			
	16 KB, 20 KB, 24 KB,			
	28 KB, 32 KB			
Access pattern	random, sequential			
Read percentage	0%, 25%, 30%, 50%,			
	70%, 75%, 100%			

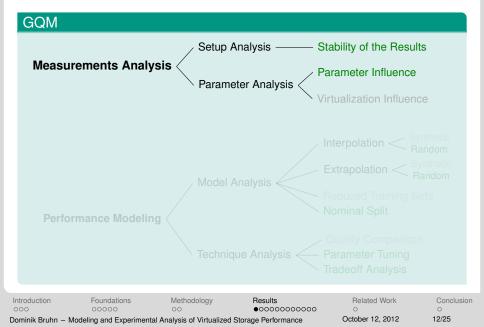
Benchmark - FFSB

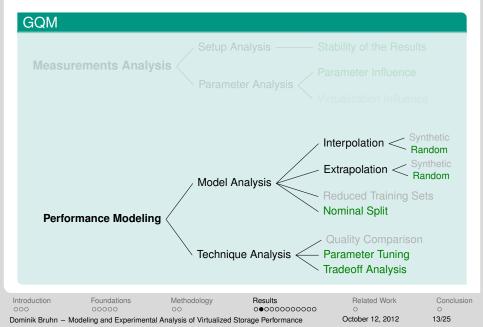
- Existing benchmark
- At application layer


System Setup

- Virtual Machines: z/Linux
 Virtualized by PR/SM in an LPAR
- DS8700 System Storage with 50 GB volatile and 2GB non-volatile cache.

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	00000	•0	00000000000	0	0
Dominik Bruhn – M	Adeling and Experimen	October 12, 2012	10/25		

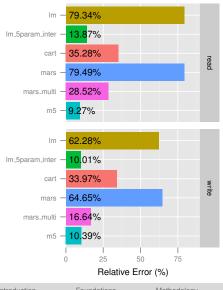

Approach


Measurement Analysis - Results

Performance Modeling - Results

Interpolation Using Random Samples

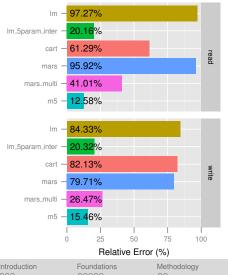
What interpolation abilities do the regression models show when being tested using newly collected samples?


Method

- Creation of six regression models:
 - Linear regression model (lm)
 - Linear regression model including interaction terms (lm_5param_inter)
 - CART tree (cart)
 - MARS model without interactions (mars)
 - MARS model including all interaction terms (mars_multi)
 - M5 model (m5)
- Training using all measurements
- Validation using newly collected random samples

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	00000	00	00000000000	0	0
Dominik Bruhn – Mod	eling and Experimental	October 12, 2012	14/25		

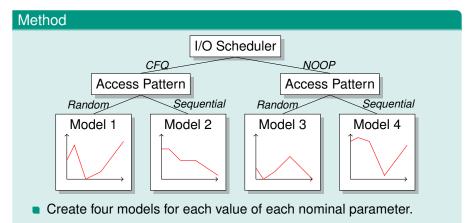
Interpolation Using Random Samples


- Models without interactions (lm, mars) do not perform well.
- With an error of ~10%, M5 works well.
- Linear regression with interactions works surprisingly well.
- CART and MARS (with interactions) rank in the midfield.

Introduction	Foundations	Methodology	Results ○○○●○○○○○○○○	Related Work	Conclusion O
Dominik Bruhn – M	Modeling and Experimen	October 12, 2012	15/25		

Extrapolation Using Random Samples

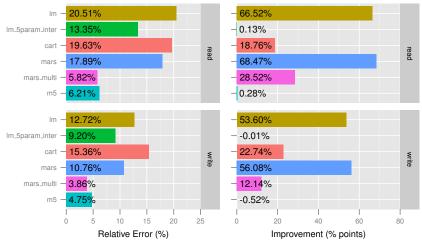
How is the extrapolation ability of the regression models when testing using newly collected data?


- Again, the models without interactions do not work well.
- CART models can not be used for extrapolation.
- M5 still performs well with an error of ~14%.

		- ()			
Introduction	Foundations	Methodology	Results oooo●oooooooo	Related Work	Conclusion O
Dominik Bruhn – M	odeling and Experiment	October 12, 2012	16/25		

Nominal Split Model Optimization

How can the regression modeling of nominal scale parameters be improved?



Remaining three parameters are all on ordinal scale.

Introduction	Foundations	Methodology	Results ○○○○○●○○○○○○	Related Work	Conclusion O
Dominik Bruhn – N	Iodeling and Experiment	October 12, 2012	17/25		

Nominal Split Model Optimization

- Models without interactions improve the most.
- The best performing models do not benefit.

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	00000	00	000000000000	0	0
Dominik Bruhn – Mo	deling and Experimen	October 12, 2012	18/25		

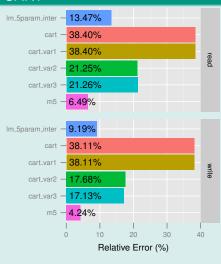
Regression Technique Parameter Tuning

Which configuration parameters of the regression techniques can improve the prediction results?

Problem

- Different regression techniques have different configuration parameters.
- Default values might not be well-suited.
- It is difficult to find the right parameters.

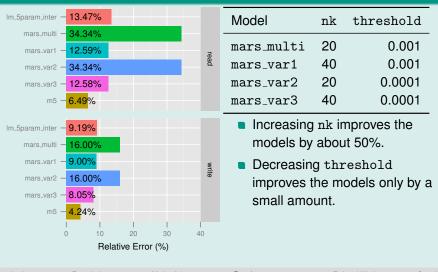
Method


- Identify the most promising configuration parameters
- Analyze the influence of these configuration parameters on the prediction quality

Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000	00000	00	000000000000	0	0
Dominik Bruhn –	Modeling and Experiment	al Analysis of Virtualized	Storage Performance	October 12, 2012	19/25

Regression Technique Parameter Tuning

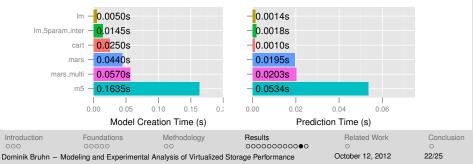
Model	minsplit	cp
cart	20	0.01
cart_var1	5	0.01
cart_var2	20	0.001
cart_var3	5	0.001


- Decreasing minsplit does not improve the models.
- Decreasing cp does improve the models by about 50%.

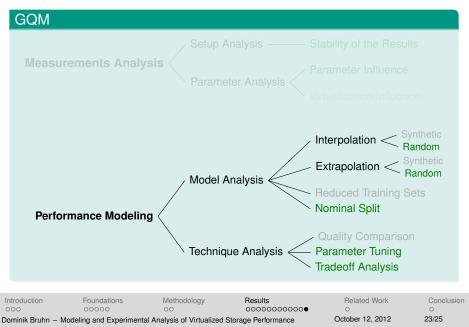
Introduction	Foundations	Methodology	Results	Related Work	Conclusion
000 Dominik Bruhn – N	00000 Nodeling and Experimen	oo tal Analysis of Virtualized	Storage Performance	October 12, 2012	20/25

Regression Technique Parameter Tuning

Introduction Foundations Methodology Results Related Work Conclusion


Regression Technique Tradeoff Analysis

What are the advantages and the disadvantages of the modeling techniques?


Criterion	Linear Regression	CART	MARS	M5
Prediction Quality	***	*	**	****
Modeling Time	****	***	$\star\star$	*
Prediction Time	****	****	$\star\star$	*
Interpretability	**	****	*	*

Stars are only ordered relative ranking.

Lessons Learned

Related Work

Storage Performance Modeling

Model storage performance using various techniques:

- Predict only the virtualization overhead: Ahmad et al. (2003)
- Use fine-grained models: Kraft et al. (2011), Huber et al. (2010)
- Omit system parameters Wang et al. (2004), Anderson (2001), Lee and Katz (1993)

Measurement Based Regression Analysis

Use, evaluate and compare regression techniques on other systems:

Westermann et al. (2012), Courtois and Woodside (2000), Kim et al. (2007)

Introduction	Foundations	Methodology	Results 000000000000	Related Work	Conclusion O
Dominik Bruhn – M	Modeling and Experiment	tal Analysis of Virtualized	Storage Performance	October 12, 2012	24/25

Conclusion

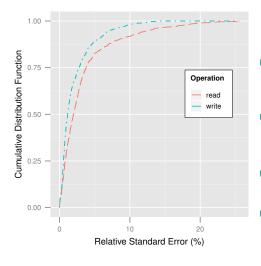
Summary

- Creation and evaluation of storage performance prediction models using regression techniques
- Evaluation of techniques and optimization possibilities

Analysis Results

- Extra- and interpolation of storage performance using regression models works well: Errors \leq 15% possible
- M5 and linear regression models are the best choice in these case.
- Optimization possibilities: Nominal parameters and configuration of the regression techniques.

Outlook

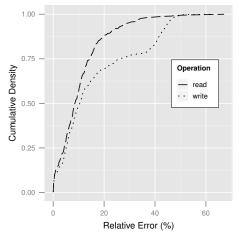

- Further analysis of the optimization possibilities of regression techniques.
- Application and validation using true applications.

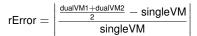
Introduction	Foundations	Methodology	Results	Related Work	Conclusion
Dominik Bruhn – Mode	ling and Experimental Ar	nalysis of Virtualized Stora	age Performance	October 12, 2012	25/25

BACKUP

Stability of the Results

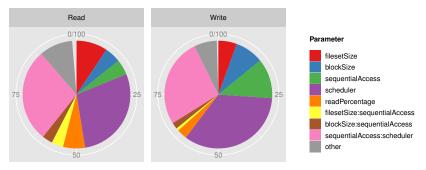
How reproducible are the experiments results?


$$\mathsf{rError} = \frac{\sigma_R \cdot 100\%}{\sqrt{5} \cdot \overline{R}}$$


- Read Requests:
 - Mean Standard Error: 3.35%
 - 90th percentile: 8.45%
- Write Requests:
 - Mean Standard Error: 2.10%
 - 90th percentile: 5.35%
- Each measurement run issues up to 2.7M requests.
- Measurements are sufficient repeatable and stable.

Virtualization Influence

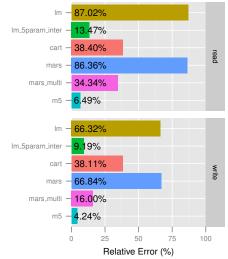
What is the influence of virtualization?



- Mean read requests: 10.60%
- Mean write requests: 16.67%

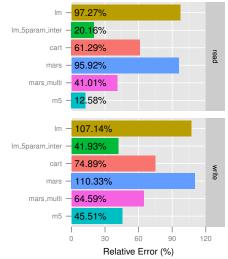
Parameter Influence

Which parameters have an influence on the response time?



- 98.71% (Read) and 99.53% (Write) of the variation can be explained.
- Without interaction terms: Only 54.03% (Read) or 63.36% (Write)
- Interactions terms are necessary.
- All five parameters influence the response time.

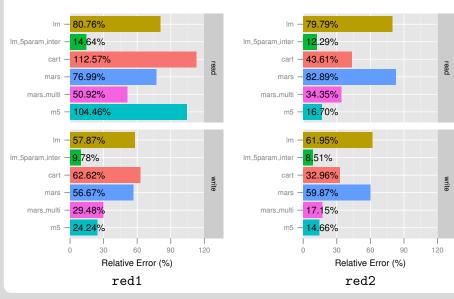
Interpolation Using Existing Data


How good is the interpolation of the regression models when using synthetic test sets?

Extrapolation Using Existing Data

How good is the interpolation of the regression models when using synthetic test sets?

Reduced Training Sets



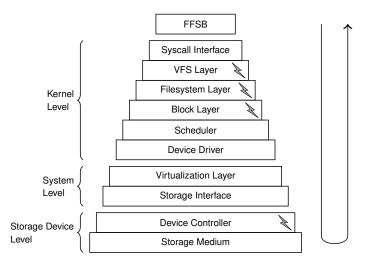
How many measurements are needed for an accurate model?

	red1	red2
Block size	4 kB, 32 kB	4 kB, 16 kB, 32 kB
Read percentage	25%, 75%	25%, 50%, 75%
File set size	1 GB, 100 GB	1 GB, 50 GB, 100 GB
Access	random, sequential	random, sequential
Scheduler	NOOP, CFQ	NOOP, CFQ
# of configurations	32	108

Reduced Training Sets

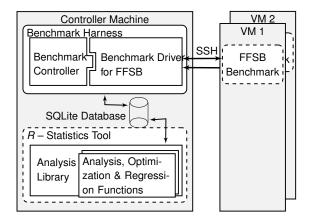
Parameter Tuning–Paired T-Test

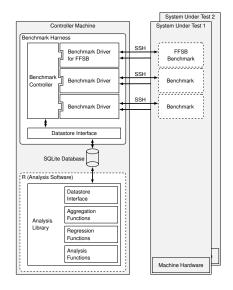
CART


Model	minsplit	ср	p (comparing to cart)
cart	20	0.01	
cart_var1	5	0.01	identical
cart_var2	20	0.001	0.014
cart_var3	5	0.001	0.015

MARS

Model	nk	threshold	p (comparing to mars_multi)
mars_multi	20	0.001	
mars_var1	40	0.001	0.04
$mars_var2$	20	0.0001	identical
$mars_var3$	40	0.0001	0.04


System Layers


Benchmarking Setup (Simplified)

Benchmarking Setup

Related Measurement Approaches

- Differences from all three tools:
 - No automated analysis of the benchmark results
 - No automated model generation
 - No automated analysis of the regression models
 - No integration for storage benchmark
- Differences from Software Performance Cockpit:
 - No simoultaneaous execution of benchmarks on multiple hosts
 - Relies on RMI for the transport
- Differences from *Ginpex*:
 - Missing integration of external benchmarks
 - No regression technique integration
- Differences from Faban:
 - No specification of multiple jobs to be run.
 - No analysis possibilities

References I

- I. Ahmad, J.M. Anderson, A.M. Holler, R. Kambo, and V. Makhija. An analysis of disk performance in VMware ESX Server virtual machines. In *Workload Characterization*, 2003. WWC-6. 2003 IEEE International Workshop on, pages 65–76. IEEE, 2003. doi: 10.1109/WWC.2003.1249058.
- Eric Anderson. Simple table-based modeling of storage devices. Ssp technical report, HP Laboratories, July 2001.
- Marc Courtois and Murray Woodside. Using regression splines for software performance analysis. In *Proceedings of the 2nd international workshop on Software and performance*, WOSP '00, pages 105–114, New York, NY, USA, 2000. ACM. ISBN 1-58113-195-X. doi: 10.1145/350391.350416.
- Nikolaus Huber, Steffen Becker, Christoph Rathfelder, Jochen Schweflinghaus, and Ralf H. Reussner. Performance modeling in industry: A case study on storage virtualization. In *Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering Volume 2*, ICSE '10, pages 1–10, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-719-6. doi: http://doi.acm.org/10.1145/1810295.1810297.

References II

- Hyunjoong Kim, Wei-yin Loh, Yu-shan Shih, and Probal Chaudhuri. Visualizable and interpretable regression models with good prediction power. *IIE Transactions*, 39: 565–579, 2007.
- Stephan Kraft, Giuliano Casale, Diwakar Krishnamurthy, Des Greer, and Peter Kilpatrick. IO performance prediction in consolidated virtualized environments. In *Proceedings of the second joint WOSP/SIPEW international conference on Performance engineering*, ICPE '11, pages 295–306, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0519-8. doi: 10.1145/1958746.1958789.
- Edward K. Lee and Randy H. Katz. An analytic performance model of disk arrays. *SIGMETRICS Perform. Eval. Rev.*, 21(1):98–109, June 1993. ISSN 0163-5999. doi: 10.1145/166962.166994.
- Qais Noorshams, Samuel Kounev, and Ralf Reussner. Experimental evaluation of the performance-influencing factors of virtualized storage systems. In *Proceedings of the 9th European Performance Engineering Workshop (EPEW'12), Munich, Germany, July 30-31*, 2012.

References III

Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos, and Gregory R. Ganger. Storage device performance prediction with CART models. In Proceedings of the The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, pages 588–595, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2251-3.

Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farahbod. Automated inference of goal-oriented performance prediction functions. In *27th IEEE/ACM International Conference On Automated Software Engineering (ASE 2012)*, September 2012.