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Zusammenfassung

Im Zuge der zunehmenden Anforderungen an die Verfügbarkeit, Skalierbarkeit und Effi-
zienz unter Performanzgarantien von Software– und Hardwaresystemen hat sich Virtua-
lisierung als eine Technologie durchgesetzt, die diese Anforderungen erfüllen kann. Durch
diese Entwicklung gerät auch die Performanz von persistentem Speicher vermehrt in das
Blickfeld: Wenn immer mehr Last auf einer Maschine gebündelt wird, steigen gleichzeitig
die Anforderungen an die persistente Speicherhardware und deren Performanz. Beschleu-
nigt wird diese Entwicklung durch den zunehmenden Bedarf an schnellen Antwortzeiten
für Anfragen auf große Speichermengen.

Im Umfeld von virtualisierten Maschinen treten viele Fragestellungen im Zusammenhang
mit persistentem Speicher auf: Für Systemadministratoren ist bespielsweise die Frage
wichtig, in welchem Maße Änderungen der Systemeinstellungen Auswirkungen auf die
Speicherperformanz des Gesamtsystems haben. Für Anwendungsentwickler sind degegen
Abschätzungen über die Antwortzeiten von Anfragen an das Speichersystem hilfreich, um
die Gesamtperformanz ihrer Anwendungen abschätzen zu können. Diese Fragen können
nur schwierig im laufenden Betrieb beantwortet werden. Falls kein mit dem Produktivsys-
tem vergleichbares Testsystem zur Evaluation zur Verfügung steht, ist eine Abschätzung
der Speicherperformanz ohne Änderungen am Produktivsystem wünschenswert. Diese
Probleme können mit statistischen Modellen gelöst werden, für deren Erstellung einma-
lig Messdaten auf dem entsprechenden System gesammelt werden müssen. Nachdem die
Modelle erzeugt wurden, liefern sie Vorhersagen der Performanz bzw. der Antwortzeiten
von Speicheranfragen ohne weiteren physischen Zugriff auf das System und ohne dessen
Veränderung.

Vorhandene Arbeiten betrachten entweder die Gesamtperformanz des Systems in ihren Un-
tersuchungen und Vorhersagen oder fokussieren sich auf die Untersuchung der Performanz
von persistenten Speichersystemen auf der Betriebssystemebene ohne Berücksichtigung
des Dateisystems. Diese Betrachtungen können nur indirekt helfen, die Anwendungsper-
formanz abzuschätzen.

In der vorliegenden Diplomarbeit wird ein Ansatz basierend auf statistischen Regressions-
modellen verfolgt. Um diese erstellen zu können, wird zuerst der Einfluss der verschiedenen
Parameter analysiert und quantifiziert, wobei die hierfür benötigten Daten durch systema-
tische Messungen der persistenten Speicherperformanz gewonnen werden. Mit dem Wissen
über den Einfluss der Parameter, werden aus den gemessenen Daten Regressionsmodelle
erstellt.

Diese Regressionsmodelle werden detailliert untersucht und ausgewertet. Ihre Qualität
wird anhand von mehreren Metriken beurteilt und eingeordnet. Zusätzlich werden ver-
schiedene Regressionstechniken benutzt, analysiert und verglichen. Es erfolgt außerdem
eine Einschätzung, auf welchem Wege die Modelle verbessert werden können, unter ande-
rem, indem die Regressionstechniken angepasst oder andere Messdaten verwendet werden.

Der Ansatz zeigt gute Ergebnisse: Es werden Performanzdaten des persistenten Speichers
in virtuellen Maschinen gesammelt, die auf einer IBM System z Maschine ausgeführt wer-
den, wobei eine IBM DS8700 als Speichersystem benutzt wird. Basierend auf diesen Mess-
daten werden Regressionsmodelle erstellt, die die Antwortzeiten von persistenten Spei-
cheranfragen mit einem relativen Fehler von 3.8% vorhersagen. Die Unterschiede der ver-
schiedenen Regressionstechniken werden durch die Qualität der Vorhersagen der Modelle
deutlich. Zudem unterscheiden sich die Techniken im Zeitbedarf für die Modellerstellung
und die Vorhersage, in der Komplexität der Algorithmen und in der Interpretierbarkeit
der Modelle.
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Abstract

In recent years, the increasing demand for resource scalability and resource efficiency as
well as demands for greener IT led to the widespread use of virtualization technology.
Server consolidation through virtualization provides a solution to optimize data center
operating costs, administration overhead and resource flexibility. Having increasingly vir-
tualized environments, virtualized storage performance requires more and more attention:
If more load is concentrated on a single machine, the requirements for performance of the
storage hardware also increases. This development is accelerated by a growing demand for
fast response times of storage requests working on huge data sets.

In the field of virtualization, many questions concerning storage and its performance arise:
For system administrators, the question of the influence of changes of system settings on the
storage performance is important. For application developers, an estimate of the response
time of storage requests is helpful to assess the overall application performance. These
questions can not be answered easily on running machines: If there is no evaluation system
available, which is comparable to the production system, an estimate of the performance
of storage systems without changing the production system is helpful. A possible solution
for these problems are prediction models: They are created using measurements which
have to be gathered on the system once. After their creation, the models can then be used
to answer the questions by providing a prediction for the performance and the response
time of storage requests. They provide a prediction without the need for further physical
access on the system and without its modification.

Even though the need for practical storage performance prediction approaches is high,
there are few existing approaches that thoroughly analyze and evaluate virtualized stor-
age systems. These approaches either focus on the overall system performance without
including the storage system in detail or focus on the evaluation, analysis and prediction
of the performance of storage systems at the operating system layer. The latter approach
does not include the file system and can therefore not be used directly to predict the
application performance.

This thesis presents a systematic performance analysis and evaluation approach for I/O–
intensive applications in virtualized environment. First, an in–depth analysis and quan-
tification of the parameters, which influence the storage performance, is conducted. The
data which is needed for this process is obtained from systematic measurements. Second,
statistical regression models are created based on the systematic measurements, using the
knowledge on the influencing parameters. Next, these regression models are analyzed in
detail to evaluate their quality. In a trade–off analysis, different regression techniques are
compared and checked for their applicability on the prediction of storage performance.
Finally, an assessment of how the regression techniques can be enhanced is presented.

The approach shows good results: The storage performance measurements of virtual ma-
chines are systematically collected. The virtual machines are executed on an IBM System z
and the storage is provided by an IBM DS8700 system storage. The regression models
which are created during this thesis can predict the response time of a storage request
with a relative error of as low as 3.8%. The differences between the regression techniques
are shown in detail: These differences include the quality of the models, the time required
for the creation of the models and the prediction of samples, and the complexity and
interpretability of the models.
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1. Introduction

In recent years, the increasing demand for flexibility and cost efficiency and the focus
on topics like green IT and cloud computing led to the widespread use of virtualization.
Server consolidation through virtualization provides a solution to the requirements of low
costs, flexibility, administration and scalability.

Having increasingly virtualized environments, virtualized storage performance requires
more and more attention: This results from the fact that the aggregation of multiple
systems on one host machine leads to an increasing demand for storage performance.
Another reason for the growing request for storage performance is the demand of today’s
applications to work on huge amounts of data and reply to requests in short time. This
is especially true for web applications and online services which work on massive amounts
of data which can be searched and edited by millions of users at the same time. Another
example are search engines and other services which need to handle a massive amount of
data in a reasonable short time.

Virtualized storage is often neglected by the current software performance engineering
approaches [NKR12]. There exists little information, understanding and knowledge about
the influence of the different system and workload parameters and their interaction on
the storage performance. Most current approaches either take a black–box approach for
the virtualized storage system (e.g. cf. [AAH+03]) or adopt an approach which involves
sophisticated and full–blown simulations (e.g. cf. [HBR+10]).

If storage performance is analyzed and examined, this is typically done taking the systems
or the operating systems view (e.g. cf. [CKK11, WAA+04]). This means that the perfor-
mance of the storage is examined as seen by the operating system without taking the file
system into consideration. The view of the application on storage is different due to the
mechanisms and policies introduced in the operating system itself, especially at the file
system layer. This view of the application on storage performance and the importance
of storage performance at the application layer is often neglected. As this is the view of
the application developer and in the end also the view of the user of the software, it is
important to consider this viewpoint on storage performance.

It is often desirable to predict the performance of storage requests. Both, an application
developer and a system administrator typically need to predict the storage performance
after having made changes to the system or their application. This is difficult if the host
system and the storage system are not available for testing, either because they are in
use as production system and cannot be spared for evaluation or because the systems are
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2 1. Introduction

not present at all, for example when evaluating the acquisition of a new storage system.
The influence of a setting or parameter change on the system is also difficult to evaluate
because it is often not possible to change the system as it is used in production and an
interruption of the service should be avoided. Another difficulty is the estimation of the
storage performance after a software change. The information if, for example, an increase
in read requests has an influence on the overall software performance can typically only
be obtained on the actual system which is often impossible because to the facts specified
above. When operating virtual machines another use of storage performance models is
the prediction of changes to the system performance when changing the virtual machine
setup: An example usage are two virtual machines which are running on two separate
hosts and the operator wants to know if an aggregation on a single host degenerates the
performance of the virtual machines. If this decision should be made automatically by the
management software, storage performance models are essential.

Statistical storage performance modeling helps in all these cases: It provides a statistical
regression model which can be used to predict the storage performance without the need
for access to the machine. Nevertheless, the performance data which is used to create
the regression model must be obtained on the actual system. Based on these one–time
measurements, the regression models can be generated. After this, they can be used at
anytime to predict samples, even those not benchmarked, without any further access to
the system.

When looking at statistical storage performance regression models, it is unclear how well
these models perform and how usable their results are. As there exists a huge number of
regression techniques, the question arises which of these techniques is suitable for mod-
eling storage performance. It is unclear whether simple regression techniques, like linear
regression, suffice, or more sophisticated regression techniques, like MARS [Fri91], CART
[BFSO84], or M5 [Qui92], are needed for good results. Potentially, it might not be possible
to predict storage performance at all using regression models and other solutions must be
found. Additionally, the question arises if and how these regression techniques can be
tailored to the prediction of storage performance.

Regression models can be helpful in two ways: First, they can be used to simply predict
the storage performance. In this case, the internals of the models and their contents are
not important and the focus mainly lies on the quality of the predictions. Second, the
regression models can also be used to get insight to the system which was modeled. This
involves the detailed analysis of the models which makes interpretability an important
requirement. The decision for the goals of the modeling has influence on the choice of the
regression techniques as the form and the characteristics of the regression techniques are
different.

This thesis presents a systematic performance analysis and evaluation approach to I/O
intensive applications in virtualized environments. In a first step, this thesis contains an in–
depth statistical analysis and quantification of the parameters which influence the storage
performance. The analysis is based on systematic measurements gathered on an IBM
System z and an IBM DS8700 used as storage system. Using these measurements and the
results from the parameter analysis, statistical regression models are created in a second
step. These models are evaluated and analyzed for their quality in terms of generalization
abilities, interpolation and extrapolation. Next, in a trade–off analysis, different regression
techniques are compared and checked for their applicability on the prediction of storage
performance. Finally, an assessment of how the regression techniques can be enhanced
is presented. As explained above, the systematic measurements are gathered on an IBM
System z and an IBM DS8700 storage system. These two real world systems are state–
of–the–art virtualization technology. Applying, testing and evaluating the approach on a
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1.1. Contribution 3

machine like the IBM System z also assures that the process can also be applied on other
real world scenarios. This thesis is based on the work previously done by Noorshams et
al. [NKR12]. They use a quantitative approach to identify which parameters influence the
storage performance on a virtualized system which is reused in this thesis.

1.1. Contribution

The contribution of this thesis is fourfold:

1. A statistical evaluation of storage performance influencing parameters using system-
atic measurements in a real world environment with state–of–the–art technology.

2. A systematic creation and evaluation of regression models for the prediction of stor-
age performance using the results of systematic measurements.

3. An in–depth evaluation, analysis and comparison of regression techniques valid for
storage performance prediction.

4. A fully automated approach for the measurements, for the evaluation and the analysis
of the parameters, of the regression models, and of the regression techniques.

1.2. Outline

This thesis is structured as follows:

• Chapter 2 contains related work. It is categorized into three groups: The first group
contains publications which have a related approach to system performance modeling
without a focus on storage performance. The second section includes papers which
have a specific focus on storage performance and the third section contains papers
which are not directly related to storage performance prediction but are related
because of their work on regression techniques and modeling per se.

• In Chapter 3, the technical foundations are laid. This includes the explanation of
the system under test and the storage hardware. Additionally, the parameters which
can have an influence on this system are discussed and the benchmark used in this
thesis is presented.

• Chapter 4 contains the statistical and mathematical foundations which are needed
in the later sections. This includes, after some first basic definitions, an in–depth
explanation of the four regression techniques which are used later in this thesis to
model the storage performance. Additionally, this chapter contains a description how
regression techniques and their results can be compared in a statistically correct way.

• Chapter 5 describes the actual setup which was used for the benchmarks, the analysis
and the modeling. First, the parameters which are analyzed and their ranges are
defined. Later in this chapter, an introduction to the Storage Benchmark Harness
and the Analysis Library is included. These two tools were written for this thesis
and are designed to automate the benchmarking, analysis and modeling process. The
chapter closes with the Goal/Question/Metric plan which explains in–depth which
questions are analyzed in the next two chapters.

• Chapter 6 contains those research questions which are not related to the modeling
but focus on the analysis of the benchmark results and the influencing parameters
instead.

• Chapter 7 focuses on the regression models which can be built from the collected
results. It contains two sections: The first section analyzes how well the regression
techniques can be applied to the data and the second section compares the different
regression techniques with respect to storage performance modeling.

3



4 1. Introduction

• Chapter 8 closes this thesis with a summary and an outlook on future work.
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2. Related Work

This section presents the related research papers. For a better overview, the papers have
been categorized into three different sections: The first section contains those papers
which focus on the overall system performance. The second section presents the papers
which have a closer focus on storage performance. The third section lists papers which
have a related approach but do focus on neither overall system performance nor storage
performance.

2.1. System Performance Modeling

All papers in this section do not explicitly focus on storage performance. Instead they
analyze and model the performance of a whole system.

Kundu et al. [KRDZ10] gather performance metrics of a whole system. They control the
CPU, memory, disk bandwidth and network bandwidth usage limits. Afterward, they
benchmark four different applications with varied values for the resource limits. Each of
these four applications has its own output variable which is measured when the limits are in
effect. They feature a CPU intensive, a memory intensive and a disk intensive application
together with an overall system testing application. They then use their four limiting
parameters as independent variables and the application dependent output as dependent
variable for multiple regression models. They test several variations of the linear regression,
including quadratic terms and interactions. Additionally they use artificial neural network
models as an alternative modeling technique. Later the results of the linear regression are
compared to the artificial neural network models. The models are automatically refined
using an iterative model training. Although the authors use XEN to limit the resources
of the virtual machines they do not focus about virtualization. As result of their papers,
the authors show that using artificial neural network models provides significantly better
results than using linear regression models. They were able to predict the outputs of the
benchmark applications with a median modeling error below 6.65%. While including the
storage performance in their models, they do not include any workload parameters but
focus on the system limits.

Benevenuto et al. [BFS+06] decide to use simple queuing models to predict the performance
overhead of a migration from a dedicated machine to a virtual machine. They use three
different benchmarks and collect their output to predict this overhead. The authors use a
simple mathematical formula with constant factors similar to a linear model. The results
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6 2. Related Work

from their benchmarks are used to compute the coefficients in the formula. They do not
focus on storage and storage performance at all and even choose not to model the time
required for the disk accesses.

Huber et al. [HvQHK11] run a more general approach: First, they conducted various
experiments on two different virtualization platforms and on a native machine. Afterward,
they calculated the virtualization overhead of some components like network, memory and
disks. Later, they propose a model which helps to estimate the performance of virtualized
machines. Their prediction model is based on linear regression. The paper contains a
more overall view on several components while focusing on the overhead of virtualization.

In their publication, Koh et al. [KKB+07] use two virtual machines and examine which
combinations of applications result in performance interference. In a second step they
create a statistical model which predicts the performance of applications based on their
characteristics. These characteristics include the number of blocks which are written per
second and other storage and CPU related characteristics. The focus of their examinations
is the performance analysis and modeling of applications not of storage requests.

2.2. Storage Performance Modeling

The contributions in this category explicitly focus on the analysis and modeling of storage
performance. Their main difference lies in the parameters they include in their analysis:
Some authors choose to include only workload parameters, other authors include only
system configuration in their examinations. The first paper [NKR12] is the only one
which models the performance at file system layer. Most papers focus on benchmarking
and modeling at the block layer.

This thesis is based on the work of Noorshams et al. [NKR12]. The authors take a similar
approach as this thesis for the benchmarking: They also use FFSB for the benchmarking
and variate both, the workload and system parameters. They use the same IBM system
as the one used for this thesis. Their main focus lies on the analysis of the performance
influencing factors. Additionally they include some basic modeling approaches using linear
regression models, mainly to show which parameters have a linear correlation.

Wang et al. [WAA+04] use CART models to predict storage performance. They use two
separate sets of input variables: Their first set uses five different workload configuration
variables as independent variables, the second set uses detailed descriptions of each request
issued as independent variables. Their dependent variable is the response time of a request.
They do not run any benchmark but instead rely on pre–existing traces from real world
storage systems. The CART models are trained using parts of these traces. Other parts
of the traces are used to validate the models. The authors compare the two CART models
to two predictors which do not include the workload parameters but instead use constant
values. Linear regression models are also included in the comparison. The whole work
uses block layer requests and the authors do not include the file system in their models.
In their results the authors show that predicting the response time from both, workload
description and detailed request information, is feasible using CART models. These models
outperform the linear regression and the two constant predictors.

In their paper, Ahmad et al. [AAH+03] use mathematical models for predicting the storage
performance for a migration from a native machine to a virtualized environment. They
use benchmark runs from the native server and the virtualized instance to conduct a
model. They only varied the block size, the read/write–ratio and the ratio of requests
which are random or sequential. As a result the authors do not predict the response time
or performance of the storage requests. Instead only the overhead of virtualization is
predicted. By also focusing on the block layer, they leave out the whole file system.
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Kraft et al. [KCK+11] use queuing network models to predict I/O performance in vir-
tualized environments. They use traces, gathered from the block layer of the virtual-
ized Linux machine, to build a model for the device contention. In their follow–up work
[CKK11, KCK+12], the same authors extend this model to predict the expected I/O per-
formance after a consolidation of virtual machines. They use benchmark results from the
individual isolated virtual machine and describe a model which calculates the performance
which can be expected if the machines are consolidated. Like their previous mentioned
paper, they run their benchmarks on the block layer and are therefore unable to predict
application performance.

Huber et al. [HBR+10] measure the response time and throughput of storage block oper-
ations. The block size, the read/write–ratio and the number of clients is varied. Later a
performance model is build from this measured data. To model the collected data they use
a PCM model [BKR09]. The PCM model is validated using newly benchmarked data and
an overall approach validation is done by using the PCM models to decide between two
design alternatives. The authors conclude that the PCM is not perfectly suited to model
storage performance. Nevertheless their approach shows how valuable storage performance
prediction models are. Although the authors do not clearly state that they are not includ-
ing the file system but are benchmarking at the block layer, this can be concluded from
their approach specification.

The authors Anderson et al. [And01] use a similar approach as this thesis for the storage
performance prediction: They first gather the raw results and then use simple modeling
techniques to predict the response time or the throughput. They show how simple models
can be generated and discuss why a nearest neighbor approach is not suitable for storage
performance prediction. Instead they recommend an approach similar to linear regression
models. Nevertheless this work stays at a conceptual level: No results and no actual data
is provided.

In their paper, Lee et al. [LK93] propose a queuing model for the modeling of the utilization
of a hard disk array. They calculate the constant factors for this model from the hard
disk parameters and later prove that their models operate at a very low error rate when
predicting the utilization. The authors focus on the low level structure of the hard disk
and only model direct hardware requests. They do not include the block layer or even the
file system in their considerations.

2.3. Regression Analysis and Comparison

The authors Westermann et al. [WHKF12] take a similar approach as a later chapter of this
thesis: They compare different regression techniques and their performance when modeling
collected data. They evaluate MARS, CART, Krigin [vBK04] and a genetic programming
approach [Fab11]. They use synthetic data generated from a predefined formula to train
these models and then compare how well the regression techniques approximated the
formula. For the validation of their approach, they test their models on an optimization of
the Java Virtual Machine. While their approach comparing different regression techniques
resembles the one in this thesis, their focus is not on storage performance.

Faber [Fab11] presents an approach how to compare genetic programming to MARS. The
focus lies on genetic programming, which was not used in this thesis. Nevertheless, the
approach of using a GQM plan to compare different regression models and regression
techniques resembles the one in this thesis.

Courtois and Woodside [CW00] examine how Multivariate Regression Splines (MARS)
models can be used to predict properties of computer systems. They focus on the CPU
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time needed to send and receive TCP packets. In their paper, the authors also show what
the advantages of using MARS are and how it can be applied to other fields of study.

In their paper, Kim et al. [KLSC07] compare different regression tree algorithms by looking
at their interpretability and the quality of their predictions. They include the CART and
the M5 algorithm which are also used in this thesis. They compare the models using many
different data sets from different fields of study, including computer science, medicine, and
sports.

There are various publications which compare regression techniques in other fields of study:
Ture et al. [TKKO05] use them to predict the risk of a heart disease. In their work, they
compare various regression techniques in detail, including CART and MARS which are
also used in this thesis. Moisen and Frescino [MF02] compare five regression techniques,
including linear regression models, MARS, and CART, to predict the characteristics of
forest trees. The authors Chae et al. [CHC+01] compare different regression techniques
and how they can be used to predict data from the topics of health insurance. They
include different regression trees, for example CART, in their comparison.

8



3. Technical Foundations

This chapter gives insight into the technical constructs used in the thesis. It describes the
system which is used as the system under test and the software which is run on the system
under test.

3.1. IBM System z

The IBM System z is a series of mainframe computers designed and manufactured by
IBM. The systems are designed for high availability. Therefore the whole system is built
using spare components which support hot fail over to ensure zero downtime. The fail–
over mechanisms are implemented in the system firmware and are independent from the
operating system.

A typical IBM System z machine contains up to 80 processors (so–called processing units or
PU ). These processors can support different features: For example the Central Processor
(CP) can be used as a generic processor, whereas an Integrated Facility for Linux processor
(IFL) can only be used to run Linux virtual machines. The customer can, to some extend,
configure what processors should be built into his machine. It supports up to 1520GB of
main memory also depending on the actual configuration of the system.

The System z is a heavily virtualized system [Mei08]. Its virtualization features are older
than the virtualization technology on X86 machines. It features a complete virtualization
of nearly all of its hardware: CPU, memory and network are the most prominent virtualized
components. The system architecture supports two levels of virtualization: On the lower
level, the PR/SM hypervisor allows the partitioning of the systems hardware into so–
called LPARs. In one of these LPARs either an operating system or the second layer
hypervisor z/VM can be run. Both levels of virtualization are supported by the hardware
architecture and are therefore quite fast. The main difference is that main memory can
only be statically assign to LPARs. They do not use any memory virtualization. If memory
virtualization is needed, z/VM can be used.

The IBM DS8700 is used as storage system for the IBM System z for this thesis. The
storage system can save a huge amount of data (up to 2048TB [DBC+10]) on its hard
disks. The DS8700 features a sophisticated caching system which saves slow disks access
for often used data. It consists of two redundant management systems (so–called Processor
Complexes) which control the disks, provide management facilities and contain the memory
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Processor Complex I Processor Complex II

2 GB Non-Volatile Cache

50 GB Volatile Cache

2 GB Non-Volatile Cache

50 GB Volatile Cache

Failover and
Synchronization

Physical Disks

Switched Fiber Channel Switched Fiber Channel

Figure 3.1.: Architecture of the IBM DS8700.

which is used for the caches. Each of the Processor Complexes contains two caches: A non–
volatile cache (2 GB), where write requests are saved and a big volatile cache (50 GB) where
read requests are cached. The processor complexes are statically assigned to the underlying
storage. This means that one of the processor complexes is responsible for a specific
volume. There is no load balancing and only if a failure occurs, the other processor complex
handles the requests. A write requests is accepted by one of the Processor Complexes and
instantly written to the non–volatile cache of the other Processor Complex. This is done
to save the request if a failure of the processor complex occurs. If no failure occurs, the
write request is deleted from the non–volatile cache of the other processor complex after
the data has been successfully written to the disk. The cached write data is only accessed
if the processor complex fails before it is able to store the data permanently on the physical
disks.

The DS8700 is virtualized which means, in this case, the abstraction from the physical
drives to virtual partitions or logical volumes [DBC+10]. The DS8700 provides abstract
logical volumes for the attached systems and internally distributes the data on many disks.
Figure 3.1 shows the architecture of the IBM DS8700.

3.2. Linux & Linux on IBM System z

Linux is an open source operating system which can be run on a variety of machines and
architectures. IBM started to support Linux on the IBM System z in 2000 [DSW03].
Typical use cases for Linux on IBM System z include the migration of Linux application
from other servers to the IBM System z and the usage of software which is not available
on IBM’s default operating system z/OS. Additionally, the usage of Linux helps to ensure
portability: Because of the huge amount of architectures supported by Linux, it is easy to
port applications written on one system to another, e.g., run application written for the
X86 architecture on an IBM System z.

Linux can be run in three ways on the IBM System z [DSW03]:

• Basic or native mode: Only one Linux instance is run and it is the only operating
system on the whole machine. This resembles a Linux installation on an ordinary

10
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Figure 3.2.: Options to run Linux on IBM System z.

desktop computer. It is also called ”bare metal”. This mode is very uncommon
configuration for machines like the IBM System z as a single Linux instance can
usually not utilize the resources provided by a typical IBM System z machine.

• Logical Partition: The LPAR Hypervisor (also called PR/SM) partitions the IBM
System z in so–called logical partitions (short LPAR). There can be at most 15
partitions. Each of these partitions can run a different operating system. For example
Linux can be run in one of the partitions while z/OS is running in another one. The
resources are statically assigned to the partitions and thus dynamic resource sharing
is not possible. Processing units are statically assigned to the logical partitions. This
setup is typically used for heavily used machines which are fully using their resources
and thus need to statically assign them to the LAPRs.

• z/VM : To add more virtual machines to the IBM System z and to make resource
sharing easier, another level of virtualization can be used: z/VM is an operating
system which only purpose is to run as hypervisor and thus enable virtualized ma-
chines to use its resources. It is run inside an LPAR. z/VM supports hundreds of
virtual machines and can so be used to share resources dynamically between virtual
machines.

Figure 3.2 contains a graphical representation of these options. As the Basic mode is very
uncommon on machines like the IBM System z, this option is not considered in this thesis.

An IBM System z is typically accompanied with an external storage device. These ma-
chines use an array of hard disk to store the data which is used by the IBM System z
securely. In the case of this thesis the DS8700 is used for storing the data and the oper-
ating systems of the virtual machines. The hypervisors in the IBM System z can emulate
a conventional SCSI device towards the virtualized Linux machines [DBC+10, PBH+08].
Therefore, the DS8700 can be accessed in the same way as any SCSI device and shows no
special behavior for the Linux machines.

The virtual machines which are used for the benchmarking in this thesis run the Debian
Linux distribution. The choice for Debian was made because of its free and open source
nature and its ability to change the internals of the system easily. The Debian version
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12 3. Technical Foundations

was fixed to 6.0.2 during this thesis as any update would change the software version and
influence the benchmark results. Nevertheless, it should be noted, that Debian is not an
officially supported Linux distribution by IBM.

3.3. Possible Performance Influencing Factors

The performance of a workload depends upon two major factors: The workload itself and
the system configuration. Both can be varied in benchmarks. In the following sections,
possible factors for both groups are listed. See Figure 3.3 for a graphical representation of
the factors and their relation. During the thesis, some of the parameters are selected and
are then included in the model. Other parameters are difficult or impossible to variate.
This leads to the fact that some parameters cannot be varied automatically and require
manual operation. For example, it is impossible to change the RAID level during the
thesis as this would involve rebuilding the whole system and potentially losing all data.

During the thesis, not only the parameters but also their possible values are examined.
While this was easy for some parameters (for example Request Type), it is difficult for
others. Request Size for example can range from small values to very large values. The
search for sensible values is one of the tasks of this thesis and is discussed later.

The following sections discuss the workload and the system parameters in detail.

3.3.1. Workload Characterization

• Request type: A request to a POSIX file system can be one of the following types:
Read, Write, Create, Append, Delete. A workload can either consist of requests from
only one of these types or can be a mixed workload. In the latter case, some kind
of weights must be provided to specify the ratio of each of the request types. All
requests except for the Read and Write operation also involve changing of the file
system meta data. This means that the operations can be categorized into two
groups: Those requests which modify the file system data and those requests which
solely operate on the actual data of the files.

• Request size: The request size is composed of two parts: The first part is the block
size: It specifies how much data a single operation reads from the file or writes to it.
The second part is the amount of block which should be read. Typically not only a
single but multiple blocks should be read. The actual request size results from the
multiplication of the block size and the block count.

• Access pattern: A request can be either Sequential or Random. This specifies how
the blocks which should be read or written are accessed. As specified above, a read
request typically reads more than one block. In random access mode the benchmark
randomly requests blocks from the file while in sequential mode it sequentially reads
one block after the other. Sequential accesses benefit from the precaching attempts
of the controller hardware especially when operating on a huge file set.

• Workload threads: The amount of threads which perform file system operations
simultaneously has a great impact on the performance. Each of the threads contin-
uously issues operations on the file system and therefore on the storage device. The
amount of threads is sometime also called the client count because the threads can
be regarded as clients to the storage system. The behavior of the threads can be
configured in detail, for example the sleep time specifies how long each thread waits
after it has issued a read or write request. The amount of threads can also be used
to apply higher or lower load of the system.

12
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Figure 3.3.: Possible performance influencing factors (based on [NKR12]).
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• Virtualization: The number of virtual machines on which the benchmark is run in
parallel has a great influence on the response times. Therefore the amount of virtual
machines involved can be regarded as an influence factor. The technology, which
is used for the virtualization, cannot be regarded a workload parameter but must
be seen as a system configuration instead. See below for the explanation of the
virtualization technology.

• File size: For some requests the size of the file on which they operate on plays a
crucial role. For example, the Read operation can be configured to read the whole
file. The execution time of this operation is obviously dependent on the file size.

• File set size: The benchmark operates on a set of files which are generated before
running the benchmark. This file set can have different sizes: Smaller file sets might
fit into the cache as a whole and thus operations on such file sets can run very fast.
Larger file sets do not fit in the cache and lead to hard disk accesses. As some of the
requests can still be answered from the caches, large file sets have a huge variation
in their response times.

• Caching mode: Linux caches I/O requests in the main memory for faster lookup.
When using these caches, another layer in the memory hierarchy is introduced. It
can be disabled by using the O DIRECT flag. This disables all file system caches and
directly forwards requests to the devices. However, this setting does not disable the
caches in the storage system and other caches which are not handled by the operating
system. Reference to Figure 3.4 for the caches in the kernel which can be disabled
by this setting. For this thesis this means that even if the O DIRECT flag is set, the
caches in the DS8700 are still in effect.

3.3.2. System Configuration

• Hardware configuration: Obviously the hardware configuration has a huge impact on
the I/O performance. Nevertheless, as the system can not be changed in this thesis,
the whole hardware configuration must be regarded as fixed.

• Storage configuration: Many factors for the storage configuration like the RAID level
and the RAID block size cannot be changed on a running and already setup up stor-
age system. This makes benchmarking and modeling their influence on performance
impossible during this thesis.

• Virtualization configuration: The IBM System z supports different virtualization
modes (see Section 3.1): There might be differences between executing the virtual
machines, which executes the benchmark, in an LPAR and a z/VM container. The
latter adds another level of abstraction to the system.

• Storage protocols: The DS8700 can provide different storage protocols with different
characteristics towards the virtualized Linux systems.

• File systems: The file systems which are often used like ext4, XFS or more experi-
mental file systems like Bttrfs have different performance characteristics. Addition-
ally each of these file systems can be configured for different workloads. For example
most file systems support the configuration of the block size in which the files are
stored on the hard disks.

• Scheduler : Current Linux versions support four different I/O schedulers: noop,
anticipatory, deadline and CFQ. All of these I/O scheduler operate at the block
layer and are responsible for scheduling the block requests. The following two sched-
ulers are evaluated more closely in this thesis:

14
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The completely fair queuing scheduler (short CFQ) maintains a queue for each pro-
cess running on the system. Its major goal is the fair distribution of the available
I/O bandwidth. The I/O requests for the process are appended to the process queue.
The scheduler uses a time slicing algorithm to fairly distribute the I/O time to the
processes. Each process is allowed to do the same amount of I/O. Additionally the
requests are ordered to access blocks, which are stored together closely on the disk,
after each other and therefore speed up the operation. This scheduler is the current
default on most Linux systems.

In contrast to this complex algorithm, the no operation scheduler (short NOOP)
is the simplest scheduler available for Linux. It simply maintains a queue for all
I/O requests and works on this queue in a first–in–first–out way. No requests are
reordered or time sliced. This reduces the computation time on the host. The main
reason to use this scheduler is the fact that the storage system can better schedule
the requests because it knows about its own internals whereas this information is
unavailable to the scheduler on the host.

As the field of I/O scheduling constantly evolving, there exist a number of other
schedulers: The deadline and the anticipatory scheduler are more lightweight when
compared to CFQ. They focus on maintaining an upper limit for the response time
of the requests. The Fair I/O Operations Per Second Scheduler (short FIOPS) is
a new scheduler which is currently only supported by recent Linux kernel versions.
The scheduler is optimized for data which is not stored on hard disks. The sched-
uler contains some assumptions which are true for flash based storage and tries to
optimize the operations per second.

• Software versions: The features and optimizations included in the kernel which ships
together with the Linux distribution change fast. This makes the kernel version a
performance factor and must be kept in mind.

3.4. Benchmarking & FFSB

A major task during the thesis is benchmarking. In a later section, the chosen benchmark
is described. The benchmark runs have to be repeated several times to get stable results.
It might even be necessary to dismiss the first runs because of caching effects. For the
same reason the running time of the benchmarks has to be sufficient large.

For the whole benchmarking and model generation process, the storage system is be re-
garded as a black–box, so no status information from the storage devices is used. This
does not mean that internal information, like the size of the caches is not be included in
the analysis.

The Flexible File System Benchmark1 (short FFSB) is a cross–platform benchmark tool
which operates at the file layer. This means that it issues read and write requests to files.
The results are therefore collected at the same layer as any other application accesses its
files at. This is different from the approach of benchmarking at block layer. At this layer,
the file system does not play a role. On the one hand, the FFSB approach makes the
model generation more difficult but on the other hand the results can be used to generate
prediction models for the performance of storage requests for applications and not only
for the operating system.

FFSB was selected because of its use in other related publications, like the research paper
of Kraft et al. [KCK+11]. FFSB is freely available as open source and can be configured
easily.

1http://ffsb.sourceforge.net
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Figure 3.4.: Different layers a requests issued by the FFSB Benchmark has to go through.
Layers marked with a thunderbolt contain caches which can speed up re-
sponses but also make predictions more difficult.

Figure 3.4 shows the difficulties of the benchmarking at this layer and therefore the dif-
ficulties of the whole thesis: Each requests issued by the benchmark application (FFSB)
goes through a huge number of layers until the request reaches the actual storage medium.
Most of the layers contain sophisticated logic and some of layers even contain caches.
These are marked with thunderbolts in the figure. Those layers with caches introduce
another indeterministic behavior in the request process: The response time decreases if
the request can be answered from one of the caches.

FFSB is provided with a configuration file for startup. In this configuration file each of
the parameters has to be set to a fixed value. The configuration files are plain text files.
They specify the behavior for each of the three steps FFSB executes. In a first step it
creates the file set on the hard disk. This task involves creating a predefined number
of files filed with random content. The file size and the file set size can be specified for
this process. The time consumed for the file set creation must not be underestimated.
The creation of a 100 GB file set takes about 20 minutes on the IBM System z specified
above. The second step of an FFSB run is the actual benchmarking. Multiple threads
issue the requests which are specified in the configuration file. Each of the threads records
the response time for each single request it has issued. The benchmarking is run until a
specified duration is extended. After this, the third phases aggregates the results from
all threads and calculates the minimum, maximum, median and mean for each of the
request operations. Additionally FFSB can be configured to output the response times
for each single operation after the benchmarking has completed. This setting allows in–
depth analysis of single runs. The output of these detailed results it not ordered so it
is not possible to analyze the temporal behavior of the operations. Instead the response
times should be regarded as an unordered list and can therefore be used to analyze the
distribution of the response times.

As most benchmarking tools, FFSB needs a stable clock source to measure the time a
request needs to be completed. Although it might seem a trivial problem, measuring short
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periods time with a high accuracy is difficult on computer systems. The clock source of
the IBM System z has proven to be stable enough for the FFSB benchmark. Nevertheless
it should be kept in mind that the clock source is a potential source of error which is
difficult to trace down.

For this thesis the FFSB benchmark has been modified at several points to adapt to the
needs. As FFSB is open source, modifications are easily possible. The modified source2 was
released again as open source. The modifications include the output of the single response
times as explained above and modifications of FFSB to adapt to the benchmarking process
in this thesis. Additional bugfixes have been incorporated in the new source code.

2https://github.com/FFSB-Prime/ffsb
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4. Statistical Foundations

This chapter provides some definitions for functions and methods used in this thesis. This
chapter can only serve as an overview of the topics. More detailed introductions to the
topic can be found in specialized literature [HEK05, HTF11, Kou11].

4.1. Basics

This section defines some basic statistical terminology used in the next chapters and
throughout the thesis.

4.1.1. Mean & Median

The arithmetic mean (or short mean or simply average) y of a set Y = {y1, y2, ..., yn} is
calculated by using the following formula:

Y =

∑n
i=1 yi
n

The median Ỹ of a sample or a set is defined as the sample for which half of the samples
from the set are larger and the other half of the samples are smaller. This leads to the
following definition when assuming that the samples in the set Y are ordered such that
y1 ≤ y2 ≤ ... ≤ yn:

Ỹ =

{
y((n+1)/2) if n is odd
1
2(y(n/2) + y((n+2)/2)) if n is even

}
The arithmetic mean gives an equal weight to all samples which means that outliers have
a huge influence on its value [Kou11]. In contrast to that the median is not influenced by
outliers.

4.1.2. Quantiles

Quantiles are a generalization of the median: The α-quantile of the set Y (expressed as
Ỹα) divides the set in such a way that α · 100% of the data is smaller or equal to Ỹα and
(1 − α) · 100% of the samples is larger or equal to Ỹα. The definition for the quantile Ỹα
is, given a sorted set Y such that y1 ≤ y2 ≤ ... ≤ yn:
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Figure 4.1.: Example boxplot including labels as explanation.

Ỹα =

{
ydn·αe if n · α is odd
1
2(yn·α + yn·α+1) if n · α is even

}
For α = 0.5 the quantile is equivalent to the median. Other special cases are the so–called
quartiles: The upper quartile is defined as Ỹ0.75 and the lower quartile is defined as Ỹ0.25.
This definition directly leads to the inter quartile range (short IQR): It expresses the range
between the lower and the upper quartile and therefore represents the middle 50% of a
sample set. This means that the IQR is defined as IQR = Ỹ0.75 − Ỹ0.25.

4.1.3. Boxplots

Boxplots are a way to represent and understand the distribution of the samples in a sample
set. They help to quickly judge on the quality of the data by visualizing the outliers and the
median. Figure 4.1 shows an example boxplot together with the meaning of the different
points. The box of the boxplot contains the middle 50% of the set. This is the range
between the lower and the upper quartile. The position of the whisker is not consistently
defined in literature. For this thesis, the upper whisker is at Ỹ0.75+1.5 ·IQR and the lower
whisker is at Ỹ0.25−1.5·IQR. All points out of the range [Ỹ0.25−1.5·IQR, Ỹ0.75+1.5·IQR]
are called outliers and printed as dots. The line in the plot symbolizes the median and
the white dot the mean. Because of a huge amount of outliers in some plots, they are not
always printed. If they are omitted, this is annotated to the boxplots.

4.1.4. Cumulative Distribution Function

As explained in the previous section, boxplots can be used to show the distribution of
data. Another visualization is the cumulative distribution function (short CDF) [HEK05,
p. 839].
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Figure 4.2.: Example cumulative distribution function using the same data as the boxplot
in Figure 4.1.

An example for a CDF can be found in Figure 4.2. It shows which ratio of the samples is
smaller or equal to a specific value. The ratio is depicted on the y axis and the value on
the x axis. In the example, it can be seen that 40% of the samples are smaller or equal
2.5.

4.1.5. Sample Variance & Standard Deviation

The sample variance and the standard deviation are both typically used indexes of disper-
sion [Kou11]. The variance σ2Y of a sample set Y = {y1, y2, ..., yn} is defined as:

σ2Y =
1

n− 1

n∑
i=1

(yi − Y )2

It is always bigger than zero and is denoted in the squared unit of the samples. This
makes the sample variance difficult to understand and leads to the standard deviation:
The standard deviation σY (often also written short as sd) of the sample set Y is defined
as:

σY =
√
σ2Y =

√√√√ 1

n− 1

n∑
i=1

(yi − Y )2

The standard deviation has the same units as the samples and therefore the same units
as the mean. This makes the standard deviation easier to understand. For example a
big standard deviation can be caused by outliers in the data set. A smaller variance and
therefore a smaller standard deviation means that the samples are closer to the mean.

4.2. Analysis of Variance (ANOVA)

The analysis of variances (or abbreviated ANOVA) is a statistical technique which can
be used to compare two or more alternatives. In this thesis it is used to check if the
changing of a parameters values has a significant effect. The technique accomplishes this
by comparing the variation between the samples within the same group (errors) with the
variation between the alternatives (effects). If the variation due to the effects proves to be
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statistically bigger than the variation due to errors, then the technique concludes that the
differences are a consequence of the alternative and not a consequence of the errors. This
technique requires repeated measurements of the same alternatives to quantify the part of
the variation which is caused by the noise of the measurements.

To better understand ANOVA, it is helpful to organize the data in a table like Table 4.1
(cf. [Kou11] and [HEK05]).

Alternatives
Repeat 1 2 . . . j . . . k
1 y11 y12 . . . y1j . . . y1k
2 y21 y22 . . . y2j . . . y2k
i yi1 yi2 . . . yij . . . yik
...

...
...

. . .
...

. . .
...

n yn1 yn2 . . . ynj . . . ynk
Column means y.1 y.2 . . . y.j . . . y.k

Table 4.1.: Sample table for the organization of the input to the ANOVA analysis (source:
[Kou11]).

The sample table contains k alternatives as columns. For each of these k alternatives n
repeated measurements as rows are shown. This leads to a table containing n · k cells. In
a first step the column means are calculated for each alternative:

y.j =
1

n
·
n∑
i=1

yij

Using this column mean, each of the measurements in the table can be expressed as the
column mean plus an individual error eij :

yij = y.j + eij

In a second step, the overall mean y.. is calculated by averaging all values:

y.. =
1

n · k
·
k∑
j=1

n∑
i=1

yij

Using this overall mean, the column means can be expressed as the overall mean plus an
effect α of this alternative:

y.j = y.. + αj

This leads to the following representation of the single measurements:

yij = y.. + αj + eij

This representation shows the idea of ANOVA: Each individual measurements is influenced
by the effect of the alternative and an error. In the following steps, these two influencing
factors are compared by calculating three so–called sums of square of differences:
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SSE =
k∑
j=1

n∑
i=1

(eij)
2

SSA =
k∑
j=1

(αj)
2

SST =
k∑
j=1

n∑
i=1

(yij − y..)

In these definitions, SSE characterizes the variation which is caused by the errors. In
contrast to that SSA characterizes the variation which is caused by the effects. SST can
be seen as the total variation. It can be proven (cf. [Kou11]) that SST = SSA + SSE.
If the differences between the measurements are caused by real differences between the
alternatives, SSA should be statistically significant bigger than SSE. To check this, the
mean square sums are calculated by dividing the sums of squares defined above by the
respective degrees of freedom:

MSSE =
SSE

k · (n− 1)

MSSA =
SSA

k − 1

MSST =
SST

k · n− 1

An F–test is used to compare the ratio of variances:

Fcalculated =
MSSA

MSSE

This calculated value is compared to the expected value Ftable = F[1−α;(k−1);(k·(n−1))]. This
expected value can be retrieved from a precalculated table for every confidence level α.

If now Fcalculated > Ftable then one can conclude that with a confidence of (1 − α) · 100%
the variation due to the actual differences between the alternatives is statistically bigger
than the variation due to the variation caused by errors. In this way ANOVA can be used
to check if there is a statistically significant difference between the alternatives.

This ANOVA pattern can be extended to two or more factors as shown by Kounev [Kou11].
Factors in this context represent group of alternatives and can be regarded as the parame-
ters. Even adding interactions between the factors can be done using the scheme specified
above.

ANOVA can be used in two ways: On the one hand it can be used to calculate how likely a
parameter has an influence on the variation of the response time. This is no quantification
of the influence. So a high probability of influence does not mean that the parameter has
a high influence on the variation. It is only very likely that it has some influence, maybe
even a very small one. On the other hand, Kounev [Kou11] suggests to use the sum of
squares of each parameter to judge on the quantitative influence. A relative quantification
can be made by dividing the sum of squares of an individual parameter by the total sum
of squares.
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Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

a 3 3.37 77.55 1.12 460.26 0.0000
b 2 0.52 11.85 0.26 105.50 0.0000
a:b 6 0.43 9.93 0.07 29.46 0.0000
Residuals 12 0.03 0.67 0.00

Table 4.2.: Example ANOVA result for an analysis of two parameters with interactions
(based on [Kou11]).

Table 4.2 contains the result of an ANOVA analysis on an example data set containing
two parameters a and b and a response variable. The last column, labeled as ”PR(> F )”,
contains the probability that the parameter has no effect on the variation of the result. As
this probability is very low, one can assume that the two parameters and their interaction
have an influence on the result. By calculating the ratio of the sum of squares of each
parameter of the total sum of squares the influence on the variation can be quantified: The
total sum of squares is 3.37+0.52+0.43+0.03 = 4.35. The influence of parameter a on the
variation is 3.37/4.35 ·100% ≈ 78%, the influence of parameter b is 0.52/4.35 ·100% ≈ 12%
and the effect of the interaction term of both parameters is 0.43/4.35 ·100% ≈ 10%. Some
part of the variation can not be explained by the parameters: 0.03/4.35 · 100% ≈ 1%.
As all parameters and their interactions have been included in the ANOVA, it can be
concluded that this part of the variation can be explained by measurement errors. All
these values can also be found in the rSum Sq column. It should be noted that all these
values only apply to this specific model. If parameter b had been removed, the ANOVA
would return different results for the influence of parameter a and the residuals.

4.3. Regression Techniques

Regression analysis is a field of statistics which focuses on the relations between some
independent variables and some dependent variables. This field includes many regression
techniques. These techniques can be used to predict values by using statistical models
which were generated before. Many regression techniques exist and this field of study is
constantly evolving. New methods are developed and tested for various uses. For this
thesis four regression techniques are chosen for the later storage performance modeling
and prediction. In the next sections, each of these techniques is discussed in detail. Ad-
ditionally, each section contains references for in–depth study of the technique. The first
three techniques are chosen because of their widespread use by other researchers and their
relative simplicity. The fourth technique, M5, was selected because it has proven to lead
to exceptionally good results.

4.3.1. Linear Regression

Linear regression [HTF11, p. 41] is a very simple but yet powerful prediction technique.
It is the oldest and still the most important tool for modeling. For a given input vector
~x = (x1 x2 x3 . . . xn) and an output variable y a model formed by a linear function is
created:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn

In this model, β0 is called the intercept and β1, ...βn are called the coefficients.

If a new x0 is inserted at the beginning of ~x with a constant value of 1, the coefficients
β0, β1, β2, ..., βn can be joined as a vector ~β and the whole model can be written as a vector
multiplication where ~xᵀ denotes the transposed vector:
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4.3. Regression Techniques 25

y = ~xᵀ · ~β

The question arises how to fit this linear model to a set of training data and therefore
how to pick the coefficients β. To find the coefficients β and fit the linear model a set
of input vectors X = { ~x1, ~x2, . . . , ~xm} and a set of output values Y = {y1, y2, . . . , ym} of
equal length is used. Each of the members of the input vector set X is a vector which is
defined in the same way as ~x above.

There exist many different techniques for fitting the data, the most popular is the method
of least squares. This methods picks the coefficients β in such a way that the residual sum
of squares (RSS) is minimized. The RSS is defined as:

RSS(β) =
m∑
i=1

(yi − ~xi
ᵀβ)2

As RSS is a quadratic function its minimum always exists although it may not be unique.
To find this minimum RSS can be transformed into the following matrix multiplication.
For this multiplication X is a m×n matrix where each row contains one of the input vectors
from the set X defined above. In the same way ~y is a vector with m rows containing the
output variables from the set Y .

RSS(β) = (~y −Xβ)ᵀ(~y −Xβ)

The derivative of RSS must be zero for β, leading to the minimum RSS.

Xᵀ(~y −Xβ) = 0

To calculate β, this equation can be transformed as follows if XᵀX is non–singular:

β = (XᵀX)−1Xᵀ~y

This equation can be finally used to calculate the coefficients for a training set. These
coefficients minimize the residual sum of squares. An example linear model fitted using
the method of least squares can be found in Figure 4.3. This figure also contains the
samples which were used to fit the model. The coefficient β1 of the input variable x1 is
1.293 and the intercept β0 is −1.844. Therefore the fitted linear model can be described
as y = −1.884 + 1.293x1.

The linear regression can be extended in multiple ways. Two often used extensions are
explained here:

• Interactions: Interactions occur in regression analysis if two or more variables do
not have an additive effect on the output variable. Instead the effect of one of
the variables depends on the value of the other, they therefore cannot be regarded
independently.

To model the interactions between two input variables x1 and x2, a new input variable
x1,2 = x1 ·x2 is introduced. The value of this interaction variable can be calculated by
multiplication of the two input variables. The linear regression techniques described
above can be used on this input data and compute a coefficient for the interaction
term. For the example mentioned in the introduction to this section, including
interactions leads to the following linear model:
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Figure 4.3.: Example linear regression (straight line) of a sample set containing one input
variable x and output variable y (printed as dots).

y = β0 + β1x1 + β2x2 + β3(x1 · x2)

Interactions between more than two variables can be modeled in the same way by
simply multiplying all variables which should be included in the interaction. Typ-
ically, if interactions are needed for a linear model, all interactions between the
variables are included in the model and not only a subset. This means that for a
linear model with three variables x1, x2, x3, including interactions between two vari-
ables means that three new variables get introduced: x1,2, x1,3, x2,3. If also including
interactions between three variables, another variable x1,2,3 = x1 · x2 · x3 has to be
added to the linear model.

• Transformation: The input variables can be transformed using mathematical func-
tions. The technique described above does not have to be adapted to this trans-
formations. For example if an input variable x1 is squared before the regression
analysis, still a coefficient is found. In this example the linear model is:

y = β0 + β1(x1)
2

4.3.2. MARS

Multivariate Adaptive Regressions Splines (short MARS) (cf. [HTF11, p. 283] and [Fri91])
is a regression technique which can be seen as an extension to linear models. It allows
piecewise linear models. These models can provide a good fit for high dimensional data
and are still simple to generate, interpret and predict. MARS is therefore a good choice for
modeling performance results [WHKF12] and storage performance results in particular.

MARS builds its model from a collection of basis functions. These basis functions can
have two forms:

(x− t)+ =

{
x− t if x > t
0 otherwise

}
(t− x)+ =

{
t− x if x < t
0 otherwise

}
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(b) Second basis function (t− x)+

Figure 4.4.: MARS basis function pair for t = 0.5.

In this basis functions, x is one input dimensions and the constant t is the so–called knot.
These basis functions are also called hinges due to their look. The two basis functions for
t = 0.5 can be found as an example in Figure 4.4.

The basis function collection C contains a pair of basis functions for each input variable
Xj with knots at each observed value xij .

MARS generates a regression model in two steps: The first step is the creation of a large
intermediate model. This is also called the forward step. In the second step, also called
the backward step, the model is pruned to a smaller model.

For the first step MARS iteratively adds a new pair of basis functions to the model.
These basis functions are simply added to the model from the previous iteration. The
basis functions are chosen from basis function collection C. The algorithm may choose
to multiply the selected basis function with basis functions already existing in the model.
This additional multiplicator allows higher dimensional data to be modeled. The algorithm
selects the basis function and the eventual multiplicator which reduce the training error
the most. This procedure is repeated until either the maximum of terms allowed in the
model is reached or the training error gets below a certain threshold.

The output of the first step is typically overfitted and so the backward step deletes terms
from the model. In contrast to the first step, where always pairs of basis functions have
been added to the model, the backward steps can remove single basis functions. The
backward steps iteratively deletes those basis function whose deletion causes the smallest
increase in the training error. This training error is weighted using the model complexity.
This means that the term which has a high complexity is removed first if this removal does
not reduce the training error to much. This process is repeated until the model contains
less model terms than a configured limit.

Because of the linearity of the basis functions a MARS model can be computed efficiently.
Also the prediction of unknown values can be done very fast due to its easy computation.

MARS contains some configuration parameters which must be set by the user prior to its
use. The influence of these parameters on the storage performance prediction models is
evaluated in a later chapter.

• Maximum degree of interaction: This number specifies how many terms may be
included in the multiplications in the forward steps. By setting this configuration to
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Figure 4.5.: Comparison between a linear regression model and a MARS model fitted to
the same data. The regressions are shown as straight lines, the sample set is
printed as dots.

1 no multiplication is allowed and therefor no interaction can be modeled. On the
one hand, this reduces the quality of the model, on the other hand, the complexity
of the model is also reduced.

• Maximum number of terms in the forward step: This limits how many terms may at
most be included in the model after the forward step. The larger the model gets, the
more computation is involved in the first step. This also increases the computation
time when removing terms in the second step. On the other hand a larger input
model to the backward step allows the backward step to select from more terms and
therefore calculate a better model.

• Threshold for the forward step: As explained above, the forward step can come to
an end if the training error falls below a certain threshold. This threshold can be
configured. The same argumentation as before holds for the amount of terms in the
model after the forward step.

• Number of terms in the pruned model : This specifies how long the backward step
should be repeated: The step is stopped if there are not more terms in the model than
this threshold. This settings allows the configuration of the final model complexity
and must be chosen wisely: A too big value makes overfitting more likely, a too small
number makes a worse prediction model. It makes no sense to set this value higher
than the maximum number of terms in the forward step.

Figure 4.5 contains the comparison of a linear regression model and a MARS model fitted
to the same data. It can be seen that the MARS model can model the hinge character of
the data due to its basis functions whereas the linear model can only use a single coefficient.

4.3.3. CART

Classification and regression trees (short CART) (c.f. [BFSO84] and [HTF11, p. 267]) are
a group of algorithms which all have their usage of trees to model the data in common.

Figure 4.6 contains an example regression tree for two input variables. To predict a new,
unknown value, the evaluation starts at the root and the condition in this node is checked.
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is peri > 2536?

is area < 8221? is area < 3858?

2.8 4.4 5.6 6.7

yes no

Figure 4.6.: Example for a regression tree containing two input variables (”area” and
”peri”) and an output variable.

If the condition is true, the left edge is followed, otherwise the right edge. This is repeated
until a leaf is reached. The leaf contains the value to predict. Regression trees are in most
cases binary trees with conditions in their non–leaf nodes and values in their leaf nodes.
[HTF11, p. 273] states that non–binary splitting is not a good generic choice: Although it
might help for some special problems, in general the data gets fragmented to fast if using
multi way splits.

The biggest advantage of CART models is the easy interpretability even for high di-
mensional data and their fast prediction due to their simple nature. A disadvantage of
regression trees is their inability to use combinations of variables or to model interactions.
Also it is not possible to include additive effects in the models. The model might also be
misleading: A parameter might either not be included in the model creation or might be
left out after the model creation. Both times it does not show up in the regression tree so
no distinction is possible.

The main challenge is the creation of a regression tree which includes the fitting of a
regression tree model to a training sample set. Similar to MARS explained above, the
algorithm explained by Hastie et al. [HTF11] and used in this thesis is split into two
steps: The first step creates a potentially overfitted tree which is pruned to a reasonable
size in the second step. The two steps are explained in detail in the next paragraphs.

If the tree has n leaves, L1, L2, . . . , Ln, the output or the prediction for the whole tree is:

f(x) =

n∑
i=1

(avg(Li) · I(x ∈ Li))

Where avg(Li) denotes the average of the output variables of all samples which are rep-
resented by this leaf. I(x ∈ Li) is 1 only if x ∈ Li which means that x is represented by
the leaf Li.

This leads to the first step of the regression tree fitting, the creation of the tree: An initial
tree which only contains a single node is created. This node represents the whole training
data and therefore predicts the mean of the whole training data output. The algorithm
runs in an iteratively way: In each step, all leaves in the tree are split into two new leaves.
To do this split, the algorithm has to find a splitting variable j and a splitting point s.
If these two parts have been found, the old leaf Li is split into two new leaves Li1 and
Li2 where Li1 represents all data from Li where j ≤ s and Li2 represents all data from Li
where j > s. The searching of j and s is done by looking at each of the input variables
and calculating the best split point s for this variable. The split point is set in such a way
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Figure 4.7.: Regression tree before pruning: This figure shows the output of the first step
which will be pruned in the second step of the regression tree generation.
Compare to Figure 4.6 which shows the same tree after the pruning step.

that the mean squared error is minimal. For each of the input variables the mean squared
error of their best split is compared and the lowest value is selected. This leads to the
input variable j and the splitting point s which produce the smallest error.

This splitting is repeated for each of the leaves in the tree. The algorithm stops to split a
leaf if it contains less samples than a preconfigured threshold (typically 5) or if the split
does not improve the error of the whole tree by at least a configured value (typically 0.01).
For the whole tree the algorithm is stopped if no leaf can be split any further.

As mentioned above, this splitting leads to a potentially overfitted tree. For this reason in
a second second step the tree is pruned by merging or collapsing non–leaf nodes. This is
done by calculating a cost criterion for the tree: This criterion contains the quality of the
model and the amount of nodes in the tree. By adding a weight term α to this criterion
the trade off between the two parts can be configured. For a given value for α, the tree
which minimizes the cost criterion can be found using weakest link pruning [HTF11]. This
minimal tree is unique and always exists. To select an appropriate value for the tuning
parameter α, a general cross–validation (see Section 4.5 for a detailed explanation) is used:
The training data is split into five or ten groups. For each of the groups and each of the
potential values of α the pruning explained above is executed. The α which minimized
the sum of squares is chosen and the final tree is computed.

Figure 4.7 shows the same tree as Figure 4.6 but before the pruning step. You can see
that the pruning step reduced the complexity of the tree from 13 to 7 nodes.

The CART algorithm has two major configuration variables which play a role for the
parameter analysis later in this thesis. Both parameters modify the behavior of the first
step. The pruning step has no external configuration because it finds its optimal setting
for the α variable using cross–validation.
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• The minimum numbers of observations to try a split : The smaller this number is,
the more nodes are generated in the first step of the algorithm. Decreasing this
parameter therefore increases the tree size before the pruning step. Typical values
range from 5 to 20 depending on the total number of observations.

• The complexity parameter : Any split which does not increase the error by at least the
value of this parameter is not done. This parameter can be set to 0 which disables
this check and only checks for the minimum number of observations for the split.
Setting larger complexity parameters reduces the work which needs to be done in
the pruning step because the output of the first step is smaller.

4.3.4. M5

M5 [Qui92] is a regression technique which combines the benefits of linear models with
those of CART. The idea is to add a linear model to each leaf of a regression tree. The
final M5 model consists of a decision tree, where each of the non–leaf nodes contains a
condition (also called a test) and the two edges starting from this non–leaf node reference
another node which should be evaluated if the condition is true for the one edge and false
for the other edge. The leaf nodes of the tree contain a linear regression model.

The algorithm to fit such an M5 model to the training data consists of two steps. This is
again similar to MARS and CART: The first step generates a potentially overfitted tree
and the second step removes the nodes which are not necessary for a good fit.

The first step takes an iterative approach similar to the first step of CART: It starts with
a tree consisting of a single node representing all training data. Now the following steps
are repeated for each leaf in the tree:

All samples which are represented by the leaf under consideration are named T . The first
step is to find a condition which splits the samples into two new sample sets T0 and T1,
where T0 contains all those samples which do not meet the condition and T1 contains
those sample which meet the condition. To find the condition, each possible condition
is evaluated: For each condition, the two sets T0 and T1 are computed. The standard
deviation is then calculated for each of the sets. The algorithm selects the split which
maximizes the reduction of the standard deviation.

This split is saved and two new leaves are appended to the original node. These two leaves
represent the samples T0 and T1. For each of the two leaves, a linear regression model
is fitted to all samples in T0 or T1. To reduce the complexity of the linear models which
are attached to the leaf, the model is simplified. This is done by removing parameters
from the linear model. To find these parameters, the estimated relative error is defined
as ((n+ v)/(n− v)) · relativeError. Here n is the number of samples in T0 or T1 and v is
the number of parameters in the linear model. This definition extends the relative error
with a complexity term. The parameters are removed from the linear model until this
estimated relative error is minimized. The definition of the estimated relative error leads
to the fact that a term can be removed although it increases the (ordinary) relative error
as long as the complexity is decreased by an adequate value.

After this simplification, the splitting of the nodes is iteratively repeated until one of the
following conditions is met: A node is not split further if it represents less samples than
a predefined limit. Additionally, no split is made if the standard deviation of the samples
represented by the node is less than a configured threshold.

The first step leads to a tree which has a linear model attached to every node. The final
model will only contain a linear model in the leaves. This transformation is done in the
second step together with the pruning of the tree.
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(a) Regression tree
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(Intercept) 11.5 -10.1 11.9 217.5
x1 0.03
x2 0.902
x3
x4 0.518 34.6

(b) Linear models coefficients

Figure 4.8.: Example M5 model consisting of the regression tree and the attached linear
models. The left edge of a node in the regression tree must be evaluated if
the condition is true, the right edge if the condition is false.

The pruning of the tree examines each of the non–leaf nodes in the tree, starting at
the bottom. Again using the definition of the estimated relative error, two scenarios are
evaluated for each node:

The first scenario means keeping the sub tree of the node: This has an estimated relative
error of ((n + v)/(n − v)) · relativeError, where n is the number of samples represented
by the whole sub tree and v is the number of parameters in the sub tree, both in the
conditions and the linear models. The relative error is the relative error of all samples in
the sub tree when using the their appropriate linear models.

The second scenario, the removal of the sub tree, making the examined node a leaf itself.
The estimated relative error is again calculated as ((n + v)/(n − v)) · relativeError. This
time, n is the number of samples represented by the newly generated leaf. This number
is the same as in the other scenario. v is the number of parameter used in the leaf, either
by its condition or by its linear regression model. The relative error is calculated based on
the linear model which is assigned to the current node. As explained above, each of the
nodes has a liner model attached to it.

For each node, the estimated relative errors for both scenarios are calculated and the
scenario which leads to a smaller error is chosen. This is repeated for each node in the
tree. In a last step, the linear models of all non–leaf nodes are removed. These models are
not needed anymore.

The two aborting conditions for the forward step are defined and calculated by the algo-
rithm and cannot be set by the user of M5. This means that the M5 algorithm has no
configuration options.

Figure 4.8 shows an example for an M5 model. The model uses four variables x1, . . . , x4.
Not all variables are included in the regression tree: x4 is only used in the linear models.
The LM3 linear model is only a constant term. This shows that all variables have neither
to be included in the regression tree nor in the linear models. Some variables can even be
purged from both parts and not be used at all.

4.4. Model Comparison Metrics

In the following section, different metrics are discussed. These metrics can be used to
judge on the quality of a statistical model and to compare different models and regression
techniques. In this context the following sets, which are of equal length, are defined:
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A = {a1, a2, ..., an}
P = {p1, p2, ..., pn}

The A set contains the actual dependent values or the measurement results. The P set
contains the matching values which were predicted by a statistical model. This means
that by using different regression techniques, only the content of the P set changes.

4.4.1. RMSE

The Root Mean Square Error metric is calculated using the following term:

RMSE(A,P ) =

√∑n
i=1(ai − pi)2

n

The unit of the RMSE is the same unit as the actual measurements. The metric penalizes
big errors and provides an estimate for the size of a ”typical” error.

4.4.2. MAE

The Mean Absolute Error also uses the same metrics as the measurements. It is always
smaller or equal than the RMSE because of the missing square term. For the same reason,
it does not penalize big errors. The MAE is calculated using the following formula:

MAE(A,P ) =

∑n
i=1 |ai − pi|

n

4.4.3. MAPE

The Mean Absolute Percentage Error expresses the quality of the model using a percentage
value. This makes it easier to understand because value ranges do not play a role here.
The following term is used to calculate the MAPE:

MAPE(A,P ) =
100%

n

n∑
i=1

∣∣∣∣ai − piai

∣∣∣∣
4.4.4. Coefficient of Determination

The Coefficient of Determination is often called R2. It is widely used by many different
authors because it allows an easy interpretation how good the model fits the actual values.
Kvalseth [Kva85] shows that there are many different definitions of this coefficients. These
definitions result in different values for the coefficient. This makes comparing different
publications from different authors difficult without the knowledge about the actual R2

definition used. Additionally, the author explains that R2 is not suitable for compar-
ing the results between different regression techniques. For this reason the coefficient of
determination is not used during this thesis.

When used, the following definition is typically applied:

R2 = 1−
∑n

i=1(ai − pi)2∑n
i=1(yi − y)2

This means that the R2 can be used to judge the goodness of the fit in comparison to
the mean. While for very poor predictions the R2 can become negative it never becomes
bigger than 1 due to the squares in the fraction.
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(b) Not overfitted MARS model

Figure 4.9.: Example for an overfitted model on the left and a non overfitted model using
the same samples on the right.

4.5. Cross–Validation

Cross–validation (c.f. [HTF11, p. 214] and [Ste07]) is a simple and widely used solution to
estimate the prediction error. It can be used as a solution for three different problems:

• The judgment on the quality of a single regression model.

• The comparison of the quality of different regression techniques. The models must
be built from the same data set to make a comparison possible.

• The comparison of the quality of different configurations of a single regression tech-
nique. This can be used for example to check if increasing the degree of interaction
improves a MARS model.

Given a set of available samples S which should be used to answer one of the questions
above, a trivial solution would be to use the whole sample set S to train the models and
then check for each sample in S again how good the model predicts the original output.
This method falls short of multiple points: Typically, the quality of the model can be
defined as the generalization ability. Generalization means that the model adapts to the
underlying structure of the data and not to the data itself. By testing with the same data
which was used for training, the generalization ability cannot be tested. This leads to
the second problem of this approach: The model can be heavily overfitted. An overfitted
model describes only the random effects in the measurements and not the underlying
data. Figure 4.9 contains an overfitted regression model: Although it has a very small
error for the training data, it does only model the random effects of the data and not the
underlying structure. The right model shows a better fit for the samples. Although the
error is larger when being tested using the same samples as used for training, the model
must be considered to be better in terms of generalization ability.

To test one or multiple models for their generalization abilities or compare the general-
ization abilities of multiple models, cross–validation can be used. This approach is based
upon the separation of the samples into two groups: The training and the test set. These
two sets are disjoint sets, so no sample is in both, the training and the test set. The sep-
aration is done before the model generation. Then the regression model is trained using
the training data. Afterward, the model is tested using the test data and an appropriate
metric (see Section 4.4).
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There are multiple ways to split the data into the training and the test set. One of the
most used approaches is the so–called k–fold cross–validation. Figure 4.10 shows the steps
which are taken for the k–fold cross–validation. These steps are discussed in detail in the
following paragraphs.

Given a sample set S of length n, k can be in the range 1 < k ≤ n. Setting k = 1 would
lead to no cross–validation at all. In a first step the sample set is randomized meaning the
samples are brought in a random order. The second step cuts the sample set into k folds
of roughly equal length. This is done to prepare the cross–validation. For each model or
each regression technique which should be compared or judged the following procedure is
executed for each i ∈ {1, ..., k}:

The model is trained using all folds except the ith fold. This means that the model is fitted
to k − 1 folds. The ith fold, which was left out in the training is used in the next step to
test the model. This means that the model comparison metrics (see 4.4) are applied to all
samples in the ith fold.

Due to this approach the cross–validation returns k different values for each model metric,
one for each fold. This process ensures, that new, unused samples which have not been
used in the training process are used to validate the model. Therefore cross–validation
and k–fold cross–validation in particular effectively prevent overfitting.

The case k = n is known as leave–one–out cross–validation: For each sample in the data
set a new model is built without this sample and the single sample is used to calculate the
model comparison metrics. The computational overhead of this calculation must not be
underestimated as n models need to be created.

The question how to choose k cannot be answered in general [HTF11]. Large values up
to k = n lead to a high variance because the training sets are very similar. As explained
before, the computation time is also high. Smaller values for k, for example k = 5 have
a lower variance. Especially for small data sets, there is a bias in cross–validation with
small k. This may lead to an overestimation for the true error depending on the regression
technique.

Independent of the value chosen for k, cross–validation can only provide an estimate for
the true error for a model trained using the whole data set S. K–fold cross–validation
solves the problem of cross–validation even if the data set is very spare because it reuses
every sample for training and testing.

There are other methods for preventing overfitting, for example bootstrapping [HTF11,
p. 217]. The authors of this book show that bootstrapping roughly performs as good as
cross–validation in terms of error prediction and stability.

During this thesis cross–validation is used extensively to provide accurate estimations on
the quality of models and regression techniques.
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Figure 4.10.: Steps necessary for k–fold cross–validation.
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5. Experimental Methodology

This chapter explains the methodology which is used to obtain the benchmark results. The
actual results are discussed in the later chapters. This chapter starts with a discussion
on the assumptions which are made and then continues with the tools which are used to
obtain the results.

5.1. Setup

The whole benchmarking is done on the IBM System z and the IBM DS8700 as they are
described in Chapter 3. The important information, which had to be decided on, were
the parameters which should be varied and the values for each of these parameters. This
approach resembles the one presented by Noorshams et al. [NKR12], who also use the
same system and the same benchmarks.

As the parameter space is very huge, some general assumptions on the setting of parameters
have to be made: As mentioned in Section 3.3, some parameters have to be regarded fixed
due to inabilities to modify the hardware. This includes the RAID settings and other
internal settings of the IBM DS8400 as changing them cannot be done without data loss
which was unacceptable in the scenario of this thesis.

Other parameters are set to fixed values to reduce the parameter space and therefore
reduce the benchmarking time for the thesis. Nevertheless these parameters could be
changed and evaluated using the same approach specified here. Even the tools, which
were written for this thesis and which are discussed later, support changing of most of
the parameters which are theoretically possible. Nevertheless, varying more parameters
automatically increases the amount of experiment which have to be carried out.

The following parameters are set to fix values for the whole thesis:

• File size: The file size is set to 16 MB. The influence of changing the file size is not
discussed in the thesis.

• File system: The file system is set to the ext4 file system. As it is currently the most
used file system, the results should apply to typical systems.

• Operations per file: Each read and write operation is divided into 256 sub opera-
tions of the same type. Depending whether random or sequential access should be
benchmarked these 256 sub operations are done sequentially or randomly in one file.
For each of the sub operations the response time is recorded independently.
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38 5. Experimental Methodology

• Thread count : The thread count of the benchmark can be regarded in two ways:
As a workload parameter or as system configuration parameter. The latter is true
because the thread count can be seen as the load which is currently present on the
system. As the benchmarking can anyway not be done without any load on the
system, a fixed thread count can be seen as a way to model the usage of the system.
The fixed value of 100 Threads is chosen because it does not overload the system
but there are enough threads to simulate some load. Small numbers for the thread
count lead to very unstable results.

• Caches: Caches in the operating system are disabled using the O DIRECT flag. As
noted in Section 3.3, this does not mean that the caches of the storage system are
disabled. As the IBM DS8700 still is a fully cached system, the effects of caches is
still included in the models.

• Virtualization technology : Due to time constraints and technical difficulties the vir-
tualization technology remains fixed at PR/SM. Compare to Section 3.3 for other
possibilities that are not considered in the thesis.

• Software Versions: All benchmarks are carried out on a Debian 6.0.2. The Linux
kernel version is upgraded to 3.2.0 due to bugs in the default kernel which was
shipped with Debian 6.0.2.

Other parameters are varied within their respective ranges. These are also the parameters
whose influence on the response time is discussed in later sections.

• Block size: The block size is kept in the range from 4 kB to 32 kB. The lower bound
of 4 kB is chosen because of the block size of the ext4 file system is also 4 kB. The
upper bound is a synthetic bound which is selected for no technical reasons but to
limit the range. The block size is explored in 4 kB steps which leads to eight different
values for this parameter. The block sizes of read and write requests are kept at the
same value for each individual experiment.

• Read percentage: The ratio of read and write requests is controlled by the read
percentage. For obvious reasons the range can be 0% to 100%. 0% means a pure
write workload and 100% stands for a pure read workload. Five values between the
two extreme values are selected for a total of seven values for the read percentage.

• Sequential/Random access: The switching between sequential and random access is
done for both, read and write operations at the same time. Technically it would be
possible to have sequential writes and random reads at the same time.

• Scheduler : Two schedulers are benchmarked: The CFQ scheduler which is the default
scheduler on most Linux systems and the NOOP scheduler which is the recommended
scheduler for complex storage systems with their own scheduling logic like the IBM
DS8700.

• File set size: As explained above the file set size plays an important role for the
behavior of the requests. As the IBM DS8700 has a read cache of 50 GB, huge file
sets are needed to test the performance of bare hard disk operations. For this reason
the file set is set in the range between 1 GB and 100 GB in five steps.

These two lists define a set of experiments which are executed for this thesis. Table 5.1 con-
tains another view on these experiments. Additional benchmark experiments are needed
for various sections. The configuration for these experiments is noted at the appropriate
places in the sections.

For each benchmarking run, the individual response times of each request are collected.
From these individual results the mean response time can be calculated afterward.
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Parameter Values

Block size 4 kB, 8 kB, 12 kB, 16 kB, 20 kB, 24 kB, 28 kB, 32 kB
Read percentage 0%, 25%, 40%, 50%, 60%, 75%, 100%
Access mode random, sequential
Scheduler CFQ, NOOP
File set size 1 GB, 25 GB, 50 GB, 100 GB

Table 5.1.: Values of the parameters which are varied in this thesis. These values lead to
a total of 1120 configurations when using full exploration.

To test the results for their stability and repeatability, FFSB was run multiple times. For
each configuration of the parameters explained above the following steps are taken:

1. Prepare the file set : The file set is created with the correct size.

2. Warm–up run: A first run of 60 seconds is executed. The results are not collected
but thrown away.

3. Five benchmarking runs: Five benchmarking runs, each of 60 seconds duration, are
executed one after the other. The results of each of these runs are collected.

For each configuration at least 1 + 5 · 1 = 6 minutes of benchmarking time plus the
time for the file set creation is needed. The basic configuration explained above for the
two schedulers leads to a total of 8 · 7 · 2 · 2 · 5 = 1120 configurations which need to be
benchmarked on the system under test. The minimal duration for this benchmark run is
1120 · 6 = 6720 minutes or 112 hours or about 5 days. As mentioned in Section 3.4, the
creation of the file set takes a long time. For this reason the total benchmarking needs
much more time than this duration.

As the manual benchmarking of the 1120 configurations defined above is a time consuming
and error prone task, this process has to be automated. For this reason the Storage
Benchmark Harness was written. This tool automates the benchmark execution and
result gathering. Because the analysis of the results is also time consuming, this part has
also been automated in the so–called Analysis Library. The following section discusses
this automation in detail.

5.2. Experimental Automation

The application of the benchmarking and the analysis on another system is not only
tedious, time consuming and error prone, it also requires in–depth statistical knowledge
and statistical evaluation expertise. Thus, this thesis takes an approach which includes a
highly automated analysis and evaluation support. For this reason two pieces of software,
the Storage Benchmark Harness and the Analysis Library were developed.

Both parts run on the controller machine (also called the measurement machine): The
Storage Benchmark Harness consists of multiple components: The benchmark controller
controls the benchmarks on the systems under test. It uses benchmark drivers to connect
to the preexisting benchmarks and retrieve their results from the systems under test. The
results are stored in a SQLite1 database. Additional benchmark drivers can be added
easily to the Storage Benchmark Harness. Nevertheless, the Storage Benchmark Harness
should not be regarded as a framework.

The Analysis Library adds functionality to an already existing analysis software (R2).
This functionality includes an interface to the SQLite database for data retrieval. Another

1http://www.sqlite.com
2http://www.r-project.org/
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Figure 5.1.: Overview of the components involved. Dashed components are existing and
therefore reused. Two additional benchmark have been included in the dia-
gram for demonstration purposes. Currently only an FFSB benchmark driver
is available. Other benchmark drivers can nevertheless be added easily.
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Figure 5.2.: Class diagram for the benchmark drivers and the other classes involved in this
context.

important functionality of the Analysis Library is the automated model generation. In
this way, the Analysis Library helps to better understand the benchmark results.

Figure 5.1 gives an overview of the components which were developed for this thesis.
Currently the Storage Benchmark Harness only includes a single benchmark driver for the
FFSB benchmark. The other two benchmark drivers can be seen as place holders. In
the following two sections, the two parts of the experimental automation are explained in
detail.

5.2.1. Storage Benchmark Harness

The purpose of the Storage Benchmark Harness is the automated execution of bench-
marks and the gathering of the results. To interface with a preexisting benchmark on
the system under test, a so–called BenchmarkDriver is used. Figure 5.2 contains an
UML class diagram for two example benchmark drivers. As mentioned above only the
FFSBenchmarkDriver is currently implemented, the second adapter can be regarded as a
place holder.

As the Storage Benchmark Harness needs an explicit description what experiments should
be run on which systems under test, a configuration is necessary. Figure 5.3 shows the
UML class diagram for the configuration of the experiments.

Each benchmark driver takes a set of independent variables as input. These independent
variables contain values for each parameter the benchmark driver supports. Additional
variables are those parameter which are independent from the benchmark but specific for
the system under test, for example the file system. For this reason the FFSBenchmark-

Driver accepts a set of independent variables for the FFSB (IndependentVariablesOf-
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Figure 5.3.: Class diagram for the classes used to represent the configuration for the bench-
marking process.

Parameter Values

fileSystem ext4 XFS

scheduler CFQ

(a) Independent variable
space for system under
test

Parameter Values

readBlockSize 8 kB 16 kB 32 kB

writeBlockSize 64 kB

readPercentage 25% 75%

(b) Independent variable space for benchmark

Table 5.2.: Examples for independent variable spaces.

FFSB) and a set of independent variables specific for the system under test (Independent-
VariablesOfSut).

To define multiple experiments at once, the concept of so–called independent variable
spaces is used. An independent variable space contains one or more values for each pa-
rameter. Using full exploration, an independent variable space can be used to generate
multiple independent variables. Table 5.2 contains two independent variables spaces as
example, one for a system under test and one containing values for the parameters of a
benchmark.

An experiment series in this context consists of three parts: The independent variable
space of a system under test, the independent variable space of a benchmark and the
system where all the experiments should be executed. For example, the two independent
variable spaces given as example above in Table 5.2 can form an experiment series.

As explained above, the independent variable spaces are expanded using full exploration.
This means that all possible combinations of the variable values are produced. As an
example, the two independent variable spaces mentioned in Table 5.2 can be expanded
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Independent Variable Values . . .
. . . of System Under Test . . . of Benchmark
fileSystem scheduler readBlockSize writeBlockSize readPrecentage

Experiment 1 ’ext4’ ’CFQ’ 8 kB 64 kB 25
Experiment 2 ’ext4’ ’CFQ’ 8 kB 64 kB 75
Experiment 3 ’ext4’ ’CFQ’ 16 kB 64 kB 25
Experiment 4 ’ext4’ ’CFQ’ 16 kB 64 kB 75
Experiment 5 ’ext4’ ’CFQ’ 32 kB 64 kB 25
Experiment 6 ’ext4’ ’CFQ’ 32 kB 64 kB 75

Table 5.3.: Example for the full exploration of an experiment series containing the variable
spaces defined above in Table 5.2.

Figure 5.4.: Object diagram of a configuration instance.

to the six experiments listed in Table 5.3.

Figure 5.4 contains an UML object diagram for a sample configuration involving two
systems under test which are configured to execute their benchmarks in parallel.

Another important feature of the Storage Benchmark Harness is the synchronized execu-
tion of the benchmarks. As explained in the section above, FFSB (and other potential
benchmarks) run the benchmark in multiple phases. For this reason the benchmark con-
troller supports three independent phases which are run for each experiment:

• The preparation phase, where the configuration files can be generated on the system
under test and the warm–up run can be done. As some benchmarks do not need
this functionality in their benchmark drivers, the implementation is optional. The
implementation can be done in the prepareExperiment method of the benchmark
drivers.
• The actual benchmarking, where the benchmark is executed and the results are

collected. This happens in the startExperiment method of the benchmark drivers.
• A finishing phase, where leftovers can be cleaned up. This is encapsulated in the
endExperiment method.

The Storage Benchmark Controller of the Storage Benchmark Harness runs each of these
methods synchronized on all systems under test. This means that the actual benchmark-
ing happens at exactly the same time on all systems under test. This is important for
benchmarking virtualized environments.
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Figure 5.5.: Class diagram for the runnable parts of the harness which includes the con-
troller and the data store.

In a last step, the Storage Benchmark Harness uses a SQLite database to save all the
results to the hard disk. The class diagram in Figure 5.5 shows the runtime components
of the Storage Benchmark Harness. This also includes the data store interface which is
used for the result saving. This enables an analysis of the results independent of the
benchmarking runs by the Analysis Library.

5.2.2. Analysis Library

To analyze the results which are gathered by the Storage Benchmark Harness, R is used.
As the storage controller saves the results in a SQLite database, the results must be read
from there. The Analysis Library additionally contains a set of functions which help to
build regression models from the results. Additionally, all the analysis done later in this
thesis can automatically be executed. This means that most of the figures and tables in
this thesis can be recreated using new data. Additional analysis on the benchmark results
or the regression models can be executed using the provided functions and the features of
R.

The automated regression model generation uses the caret library [Kuh08]. Using this
library the following steps are done in an automated way:

1. The folding which is needed for the cross–validation (see Section 4.5) is done by
splitting the input data, for which the regression models should be built, into 10
folds.

2. For each of the regression techniques which should be evaluated, a cross–validation is
executed. It uses the folds generate in the step before. Multiple comparison metrics
for each regression technique and each model are stored and recorded. This process
ensures that all regression models are trained and tested using the same data sets.

3. A final model using all data is generated for each regression technique. This model
is trained using not only 90% of the data as for the cross–validation but using all
samples available.

4. Multiple analyses of the models are prepared and stored for later retrieval. This
includes a detailed comparison of the different models including the data necessary
to plot comparison diagrams.

The regression techniques, which are automatically compared by the analysis libraries, can
be configured in detail. This means that additional regression techniques can be included
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easily. Furthermore the configuration of each of the regression techniques can be provided
and is included in the comparison.

By combining the analysis possibilities of R with the functions provided in the Analysis
Library, a huge range of analyses can be done. As all the analysis, which was done in this
thesis, is automated, it can easily be repeated for verification purposes or to analyze other
systems or other configurations.

5.2.3. Related Benchmarking Tools

The automated execution of benchmarks and the automated analysis of their results is not
a new problem. This means that tools addressing this task have already been developed.
This section explains why a new development approach is taken instead of reusing the
existing tools.

Three tools were evaluated for the experimental automation: The Software Performance
Cockpit [WH11, WHHH10], the Ginpex tool [HKHR11] and Faban [Fab]. All three tools
were designed to help the researcher with the benchmarking process. The decision for
writing an own solution and not using and extending one of these tools was made based
upon the following facts.

An important required feature is the automated analysis of the benchmark results, the
automated model generation and the automated analysis of the regression models. This
feature is unsupported by all three tools: While the Software Performance Cockpit contains
basic analysis and model generation features, these are designed in an interactive way: The
researcher can use the user interface to check the results and generate the models. These
steps cannot be automated easily. Ginpex does include the visualization of the results
but lacks the ability to execute the analysis and the model generation. Faban does not
included any analysis, it only collects the results and saves them to the researchers hard
disk.

All three tools lack the integration of any suitable storage benchmark which has proven to
be the more complex part in the development comparing to the logic which could have been
reused partly from the existing tools. This means that reusing the tools would still have
required to write the Benchmark Driver for FFSB. Still it is easily possible to integrate
this tool in, e.g., the Software Performance Cockpit.

The Software Performance Cockpit provides a framework for benchmark execution and
result analysis. This framework aims at the measurement and modeling of generic soft-
ware systems. In contrast to this, the Storage Benchmark Harness provides an domain
specfic approach focused on the performance storage systems. On the technical side, the
Software Performance Cockpit does not support the execution of benchmarks on multiple
hosts, especially not in a synchronized way. Only one host can return results whereas
the other hosts can only act as a load driver. Collecting the results of the benchmark
runs on multiple machines at the same time is an important feature for this thesis. Ad-
ditionally, the analysis features of the Software Performance Cockpit are tailored towards
a fast and interactive analysis by the researcher and not towards a fully automated pro-
cess. Furthermore, the whole benchmarking and model generation process isn’t automated
in the Software Performance Cockpit. The Software Performance Cockpit also relies on
Java Remote Method Invocations (RMI) for the communication between the hosts and
the benchmark tool. This solution requires running Java on the systems under test. This
introduces another dependency which might be even impossible to fulfill on some architec-
tures where no suitable Java implementation exists. The Software Performance Cockpit
contains multiple features related to the execution of the benchmarks which are not sup-
ported by the Storage Benchmark Harness: It supports adaptive benchmarking, where the
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Figure 5.6.: GQM plan schema (based on [BCR94] and [Fab11]).

results are automatically refined to improve the models. Additionally, it supports a much
more advanced definition of the configuration and parameters.

The Ginpex tool aims in another direction: It helps to generate performance experiments
from a model–based specification. This approach was not suitable for this thesis as ex-
isting benchmarks had to be reused. On the technical side, Ginpex does not support the
collection of the results of external benchmarks. Only simple metrics, like runtime of the
whole benchmark and the CPU utilization, are supported. As mentioned above, the collec-
tion of the results from the benchmark is one of the required features of the tool. Ginpex
does include the visualization of the results but it provides no regression techniques to
build prediction models from the collected data. Additionally, Ginpex use RMI in the
same way as the Software Performance Cockpit to communicate with the systems under
test. Ginpex support a sophisticated configuration where many different experiments can
be defined using a high level model. These experiments can involve the benchmarking of
CPU, network and storage performance.

The Faban benchmark harness is a framework focused on the creation and execution of
performance workloads. As with the other tools, it does not include the features necessary
for storage benchmarking. On the technical side it does not include a mechanism for
running multiple experiments described by a single configuration. As mentioned above,
Faban does not contain any benchmark result analysis or regression modeling. It does allow
the definition of the benchmark jobs using Java code. This means that the benchmark
jobs are not a static specification but instead can contain logic.

5.3. GQM Plan

The analysis of the benchmark results and the regression models is one of the goals of this
thesis. Another goal is to make the analysis process as repeatable as possible. To simplify
not only the process itself and the interpretation of the results, but also the repeatability,
a systematic approach is taken.

The Goal/Question/Metric Approach [BCR94] (short GQM) provides a framework which
helps to answer research questions in a systematic way. GQM provides two perspectives
on the research progress: For the initial analysis it helps to execute the analysis in a
methodical top–down way. For the later interpretation it provides a bottom–up approach.

The main component of GQM is the GQM plan. See Figure 5.6 for the overall structure
of a GQM plan. It consists of three layers: The ”goals” layer defines at a conceptual level
the different objectives. These goals can for example be products, processes or resources.
The next level is the operational level. It contains one or more questions for each of the

46



5.3. GQM Plan 47

Goal Question Section

Part I: Experimental Evaluation and Analysis Chapter 6

Evaluation of
Measurement Setup

How reproducible are the experiments re-
sults?

6.1

Evaluation and
Analysis of Parameters

Which parameters have an influence on
the response time?

6.2

What is the influence of virtualization? 6.3

Part II: Performance Modeling Chapter 7

Evaluation and
Analysis of Modeling
Results

How good is the interpolation of the re-
gression models when using synthetic test
sets?

7.1.1

What interpolation abilities do the regres-
sion models show when being tested using
newly collected samples?

7.1.2

How good do the regression models ex-
trapolate when using synthetic test sets?

7.1.3

How is the extrapolation ability of the re-
gression models when testing using newly
collected data?

7.1.4

How many measurements are needed for
an accurate model?

7.1.5

How can the regression modeling of nom-
inal scale parameters be improved?

7.1.6

Evaluation and
Analysis of Regression
Techniques

How does the generalization ability of the
different regression techniques compare?

7.2.1

What are the advantages and disadvan-
tages of the modeling techniques?

7.2.2

Which configuration parameters of the re-
gression techniques can improve the pre-
diction results?

7.2.3

Table 5.4.: The GQM plan for this thesis with references to the matching sections in the
following chapters.

goals. These questions characterize how the goal can be achieved. They specify which
aspects of the object focused in the goal should be approached. At the lowest level, the
quantitative level, each question has one ore more metrics. These metrics are used to
quantitatively answer the questions and therefore approach the goal. The metrics must be
defined before they are used. Figure 5.6 shows that metrics can be used for two or more
questions if necessary. Often a metric gives insight to more than one aspect of the object
under research.

The specific GQM plan for this thesis is depicted in Table 5.4. It is grouped into two
parts: The first part discusses the results of the benchmarking in detail. It first checks if
the measurements setup is suitable. In a next step, the question which parameters have an
influence on the storage performance is discussed. The second part uses the results from the
first part and creates regression models based on the benchmark results. These regression
models are analyzed in-depth and checked for their generalization abilities. Additionally,
alternative approaches to benchmarking and the performance model creation are checked.
The second goal of this second part is the evaluation of the regression techniques which
can be used for generating storage performance models.
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6.1. How reproducible are the experiments results?

This question is of major importance for the interpretation of the results. As each con-
figuration is first benchmarked with a warm–up run and afterward with five separate
benchmark runs, the differences of these repetition can be used to answer this question.
See Section 5.1 for a detailed view on the benchmarking methodology.

The two metrics which are used to answer this question are the relative error and the
standard deviation of the repetitions. If there is no outer influence and no dependency
between the repetitions, the standard deviation and the relative error should be zero. The
higher the standard deviation is, the bigger are the difference between the measurements.
These two metrics are applied separately to read and write requests. As explained above,
each of the 1120 configurations is repeated five times. These repetitions are executed
directly after each other. For the calculations in this section, the standard deviation
and the relative error of the repetitions mean response time is calculated for each of the
1120 configurations: For mean response times of the five repetitions of one configuration,
defined as R = {r1, r2, r3, r4, r5}, the standard deviation σR is calculated as explained in
Section 4.1.5. The relative error is calculated as follows:

rError =
σR · 100%√

5 ·R

This leads to one value for the standard deviation and one value for the relative error for
each of the configurations. These metrics is used to judge on the stability of the single
experiments in the following paragraphs.

The experiments with the highest standard deviation in their repetitions are depicted in
Figure 6.1. The top five standard deviations for the read requests range from 9.8 ms
to 6.23 ms. The CFQ scheduler generates much more unstable measurements than the
NOOP scheduler for read requests. Looking at all experiments which were run using the
CFQ scheduler, a mean standard deviation of 2.00 ms is calculated. In contrast to that,
those experiments which run on a NOOP scheduler only have a mean standard deviation
in their measurements of 1.04 ms. This means that the CFQ scheduler roughly doubles
the standard deviation compared to the NOOP scheduler. It is difficult to identify other
similarities in the experiments with a high standard deviation.
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(b) Write Requests

Figure 6.1.: Top 5 experiments with the highest standard deviation in the mean response
time of their repeats.
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(b) CDF

Figure 6.2.: Boxplot and cumulative distribution function visualizing the distribution of
the relative error in the repetition of the experiments.

read (%) write (%)

lower whisker 0.00309 0.00682
lower quartile 0.80387 0.56788
median 1.98863 1.14751
upper quartile 3.77078 2.76742
upper whisker 8.02942 6.05783

Table 6.1.: The underlying statistical values for the boxplot in Figure 6.2.

For the write requests the situation is easier to analyze: The NOOP scheduler for huge
file sets and with pure write workload generates the most unstable results. One exception
is the first experiment which can be regarded as an outlier. The other results show a
characteristic behavior: The response time reduces over the time. This is a clear sign that
the run time of the benchmark runs is not long enough: The runs are not independent
from each other. With a warm–up time of two more minutes the results would have been
stabilized. Nevertheless, the question remains why the response time decreases with the
repeat number increasing. One would expect that the response time increases due to a full
write cache in the storage device after some time. An interesting thing to notice is that for
write requests the configurations with the highest standard deviation in their repetitions
are those, which do pure write workloads.

For the next examinations, the relative error is used as metric. It is calculated by dividing
the standard deviation by the square root of the repeat count (five in this case) multiplied
by the mean of the repeats. This allows to judge on the deviation of the results in a
relative way. Figure 6.2 contains two boxplots and a CDF which show the distribution of
the relative errors for both read and write requests. The underlying data can be found in
Table 6.1.

For the write requests, the maximum relative error is 14.4% which is an acceptable value,
especially under the conditions the measurements were retrieved. Those measurements
with a huge relative error within their repetitions show the same characteristics as the
worst measurements using the standard deviation: The response time gets better over the
first 3 repeats and then stabilizes.
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For the read requests the highest relative error is 25.5%. This is a much bigger number
which leads to the assumption that read requests are much more unstable than write
requests. This assumption can be backed up by the fact that the read cache of the DS8700
is much larger than the write cache. The mean relative error of all measurements does not
show this difference: It is 3.34% for read requests and 2.10% for write requests.

To summarize this answer: The repetitions are not as stable as they are desirable. It
is not clear why this is the case. Due to the complex nature of the storage system and
the unavailability of analysis tools, the cause of these effects remain unknown. A longer
measurement time per repetition would increase the stability. Instead of benchmarking
for five times one minute it would be necessary to benchmark five times five minutes.
Additionally an increase in the warm–up time is necessary, especially for the write requests.
This was unfeasible due to time constraints: This increase of the benchmarking time would
also increase the total benchmarking duration. With a benchmarking time of already more
than one week a further increase is not feasible. It is still possible to use the current results
as if only a single run of five minutes was run. This can be done easily by calculating the
mean of all five repetitions and treating this value like a single repeat. Nevertheless, the
repetitions are needed for the analysis of the parameters influence in the next section.

6.2. Which parameters have an influence on the response
time?

The answers to this question plays an important role on the choice on the parameters which
should be benchmarked in detail. Additionally, the answer to this question helps to decide
which parameters should be included in the models later in Chapter 7. If the answer to this
question concludes that some parameters have no influence on the storage performance,
these parameters could be left out of the model generation and further benchmarking.

An ANOVA of the parameters is the typical way to solve this problem and the results of the
ANOVA are used as metric to answer this question. Section 4.2 contains an explanation
how to interpret the results of an ANOVA analysis. To execute this ANOVA, the mean
of each benchmark run was calculated separately for read and write requests. For both,
the read and write requests, two separate ANOVAs were executed. Table 6.2 show the
results of these analyses separately for read and write requests. As the probability that
each parameter has no influence on the result is nearly zero (the exact value is smaller
than 2−16) for all parameters, it can be assumed that all five parameters influence the
variation of the mean response time. This is true for both, read and write requests.
Figure 6.3 contains a graphical representation for the quantification of the influence of the
parameters on the variation. This quantification show a huge impact of the scheduler.
This is a logical result as the CFQ scheduler is somehow unsuited for the IBM DS8700
with its sophisticated caching mechanisms. Another point is the huge relative influence
of the residuals. These residuals can either result from measurement errors or can simply
be those parts of the variation which cannot be explained using the supplied parameters.
Later in this section it becomes clear that the second case is true: The measurement error
does in fact not have such a huge influence on the variation. In this context this only
means that only about 55% of the variation can be explained using the five parameters
and all the other variation is counted towards the residuals. An interesting difference
between the read and the write requests is the influence of sequential and random access.
For read requests this does not have a huge influence while for write requests changing
from sequential to random access affects the response time.

In the following paragraph, it is checked that not only the simple parameters influence
the response time but also their interactions. To verify this assumption, an ANOVA test
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6.2. Which parameters have an influence on the response time? 53

Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

filesetSize 4 129805.09 9.36 32451.27 243.35 0.0000
blockSize 7 67227.21 4.85 9603.89 72.02 0.0000
sequentialAccess 1 64252.95 4.63 64252.95 481.83 0.0000
scheduler 1 396445.48 28.58 396445.48 2972.94 0.0000
readPercentage 5 91672.27 6.61 18334.45 137.49 0.0000
Residuals 4781 637552.54 45.97 133.35

(a) Read Requests

Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

filesetSize 4 55241.76 5.58 13810.44 181.98 0.0000
blockSize 7 84777.97 8.56 12111.14 159.58 0.0000
sequentialAccess 1 118402.39 11.96 118402.39 1560.15 0.0000
scheduler 1 338859.54 34.22 338859.54 4465.03 0.0000
readPercentage 5 30199.64 3.05 6039.93 79.59 0.0000
Residuals 4781 362838.72 36.64 75.89

(b) Write Requests

Table 6.2.: Multidimensional ANOVA test on all parameters without interactions.
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Figure 6.3.: Pie chart of the amount of influence on the variation of the response time per
parameter. Missing values to 100% are the influence of the residuals.

is used on both, the parameters and the interaction between two parameters. Table 6.3
show the results, again split into read and write requests. For both request types nearly all
parameters and their interactions seem to influence the response time. For read requests,
exceptions are the interaction term between the block size and both, the file set size
and the read percentage. It should be noted that all three parameters have an influence
as standalone terms, there is just no combined influence. For write requests no clear
statement can be made: The question if the two interaction terms mentioned before also
do not influence write requests is not clear. From the ANOVA one can at least tell that
it’s much likelier that both interactions in fact play a role than the opposite.

For the quantitative discussion the first important point is the reduction of the influence of
the error terms. Figure 6.4 contains two pie charts resembling the influence of the different
factors. To increase the readability, parameters with a small influence have been merged to
”other”. The influence of the residuals is reduced from about 46% to 7% for read requests.
This results from the fact that more variation can be explained using the interactions and
therefore less variation must be explained by the residuals. Additionally to the scheduler,
which still plays an important role, there is a huge interaction between the sequential
access flag and the scheduler for both, read and write requests. It leads to the conclusion
that for one of the two schedulers the changing from sequential to random access or vice
versa has a huger influence than for the other scheduler. Most of the other interactions do
not play a very important role, especially for write requests where all relative influences
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Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

filesetSize 4 129805.09 9.36 32451.27 1470.20 0.0000
blockSize 7 67227.21 4.85 9603.89 435.10 0.0000
sequentialAccess 1 64252.95 4.63 64252.95 2910.98 0.0000
scheduler 1 396445.48 28.58 396445.48 17960.94 0.0000
readPercentage 5 91672.27 6.61 18334.45 830.64 0.0000
filesetSize:blockSize 28 300.09 0.02 10.72 0.49 0.9897
filesetSize:sequentialAccess 4 48776.42 3.52 12194.10 552.45 0.0000
filesetSize:scheduler 4 7805.86 0.56 1951.47 88.41 0.0000
filesetSize:readPercentage 20 4569.28 0.33 228.46 10.35 0.0000
blockSize:sequentialAccess 7 43219.46 3.12 6174.21 279.72 0.0000
blockSize:scheduler 7 15613.25 1.13 2230.46 101.05 0.0000
blockSize:readPercentage 35 608.33 0.04 17.38 0.79 0.8100
sequentialAccess:scheduler 1 388654.37 28.02 388654.37 17607.97 0.0000
sequentialAccess:readPercentage 5 23591.17 1.70 4718.23 213.76 0.0000
scheduler:readPercentage 5 1445.42 0.10 289.08 13.10 0.0000
Residuals 4665 102968.87 7.42 22.07

(a) Read Requests

Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

filesetSize 4 55241.76 5.58 13810.44 1743.72 0.0000
blockSize 7 84777.97 8.56 12111.14 1529.17 0.0000
sequentialAccess 1 118402.39 11.96 118402.39 14949.62 0.0000
scheduler 1 338859.54 34.22 338859.54 42784.78 0.0000
readPercentage 5 30199.64 3.05 6039.93 762.61 0.0000
filesetSize:blockSize 28 288.46 0.03 10.30 1.30 0.1332
filesetSize:sequentialAccess 4 8163.24 0.82 2040.81 257.67 0.0000
filesetSize:scheduler 4 11948.33 1.21 2987.08 377.15 0.0000
filesetSize:readPercentage 20 1232.97 0.12 61.65 7.78 0.0000
blockSize:sequentialAccess 7 18968.06 1.92 2709.72 342.13 0.0000
blockSize:scheduler 7 13985.36 1.41 1997.91 252.26 0.0000
blockSize:readPercentage 35 553.49 0.06 15.81 2.00 0.0004
sequentialAccess:scheduler 1 263456.40 26.60 263456.40 33264.30 0.0000
sequentialAccess:readPercentage 5 6396.13 0.65 1279.23 161.52 0.0000
scheduler:readPercentage 5 899.03 0.09 179.81 22.70 0.0000
Residuals 4665 36947.25 3.73 7.92

(b) Write Requests

Table 6.3.: Multidimensional ANOVA test on all parameters including interaction terms
between two parameters.
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Figure 6.4.: Pie chart of the amount of influence on the variation of the response time per
parameter. It includes interactions between two parameters. Values smaller
than 5% have been aggregated to ”other”. Missing values to 100% are the
influence of the residuals.
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6.2. Which parameters have an influence on the response time? 55

are below 4%.

Including a higher level of interaction in the ANOVA has not proven to be of much value:
None of the interaction terms has more than 3% influence on the variation. Additionally,
the ANOVA table gets large and more difficult to read. Nevertheless, it should be noted
that the amount of variation that cannot be explained using the parameters and their
interactions goes down to 1.29% for read requests and 0.47% for write request. The
results from the two ANOVAs can be found in Appendix A.

The input for these four ANOVAs are the 1120 configurations which were repeatedly
benchmarked five times. This leads to a total of 5600 measurements which are analyzed.
A possiblity to reduce the number of measurements required is to limit each parameter
only to its extremes. This means that for each parameter only two values are benchmarked,
its minimum and its maximum. This is called a n2m ANOVA [Kou11] because only n2m

measurements are needed where n is the number of repetitions and m the number of
parameters. In the case of this thesis this would lead to 160 measurements, only about
3 percent of the measurements needed for a full exploration. The question arises if these
reduced sets is still sufficient to check which parameters have an influence on the response
time. To analyze this, a subset of the existing measurements is built containing only the
extreme values. This means that the following values are included:

• Block size: The two extreme values 4 kB and 32 kB are included.
• File set size: Again the minimum and the maximum of 1 GB and 100 GB are the

only file set sizes which are included in the subset.
• Read percentage: For the read percentage it is not possible to simply select the lowest

and the highest read percentage to be included in the subset. The reason for this
is that a read percentage of 0% would lead to no read request issued and therefore
no result would be recorded. The same is true for a read percentage of 100% and
write requests. For this reason the values included for the read percentage are 25%
and 75%, the second lowest and second highest values which were benchmarked. For
a future benchmarks, values closer to the minimum and maximum might lead to
better results.
• Scheduler and sequential access are left unmodified as they already include only two

values.

Table 6.4 contains the results of two separate ANOVAs executed on the reduced sample
set specified above. Again a separate ANOVA is done for read and write requests. By
reducing the samples, the results of the ANOVA got much more insecure. For multiple
interaction terms the answer to the question whether they influence the mean response
time or not cannot be answered with a high reliability. For example the interaction term
between file size and scheduler has a five percent probability to have no influence on the
response time. In contrast to that, in the full factorial ANOVA it can be assumed with a
very high probability that there is in fact an influence. On the other side for example the
interaction term between file set size and block size also has a probability of five percent to
have no influence. As stated above this is in fact true, the full ANOVA has a probability
of 99% for this term. These two examples show that a five percent probability of influence
for a n2m ANOVA can result in a very high probability and a very low probability in a full
factorial ANOVA. Therefore the reduction of the parameter values does not pay out. The
quantitative analysis shows that the values are a rough estimate for the values of a full
factorial ANOVA. The top four influencing factor are the same for both methods. After
this the results diverge with makes an analysis of the less important factors impossible.

The overall answer to this question is: All of the five evaluated parameters and nearly
all interactions between two parameters have an influence on the response time. The
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Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

filesetSize 1 9256.13 14.82 9256.13 201.21 0.0000
blockSize 1 5690.98 9.11 5690.98 123.71 0.0000
sequentialAccess 1 468.83 0.75 468.83 10.19 0.0017
scheduler 1 12468.30 19.96 12468.30 271.04 0.0000
readPercentage 1 5585.59 8.94 5585.59 121.42 0.0000
filesetSize:blockSize 1 17.19 0.03 17.19 0.37 0.5420
filesetSize:sequentialAccess 1 5983.55 9.58 5983.55 130.07 0.0000
filesetSize:scheduler 1 177.83 0.28 177.83 3.87 0.0512
filesetSize:readPercentage 1 183.77 0.29 183.77 3.99 0.0475
blockSize:sequentialAccess 1 2581.49 4.13 2581.49 56.12 0.0000
blockSize:scheduler 1 863.28 1.38 863.28 18.77 0.0000
blockSize:readPercentage 1 201.61 0.32 201.61 4.38 0.0381
sequentialAccess:scheduler 1 11618.73 18.60 11618.73 252.57 0.0000
sequentialAccess:readPercentage 1 526.32 0.84 526.32 11.44 0.0009
scheduler:readPercentage 1 228.67 0.37 228.67 4.97 0.0273
Residuals 144 6624.19 10.60 46.00

(a) Read Requests

Df Sum Sq rSum Sq Mean Sq F value Pr(>F)

filesetSize 1 4020.13 12.12 4020.13 305.96 0.0000
blockSize 1 5704.78 17.19 5704.78 434.17 0.0000
sequentialAccess 1 2650.29 7.99 2650.29 201.71 0.0000
scheduler 1 8790.42 26.49 8790.42 669.01 0.0000
readPercentage 1 311.58 0.94 311.58 23.71 0.0000
filesetSize:blockSize 1 51.27 0.15 51.27 3.90 0.0501
filesetSize:sequentialAccess 1 114.79 0.35 114.79 8.74 0.0036
filesetSize:scheduler 1 854.98 2.58 854.98 65.07 0.0000
filesetSize:readPercentage 1 45.56 0.14 45.56 3.47 0.0646
blockSize:sequentialAccess 1 875.52 2.64 875.52 66.63 0.0000
blockSize:scheduler 1 986.61 2.97 986.61 75.09 0.0000
blockSize:readPercentage 1 22.60 0.07 22.60 1.72 0.1918
sequentialAccess:scheduler 1 6843.28 20.62 6843.28 520.82 0.0000
sequentialAccess:readPercentage 1 1.63 0.00 1.63 0.12 0.7252
scheduler:readPercentage 1 16.60 0.05 16.60 1.26 0.2629
Residuals 144 1892.07 5.70 13.14

(b) Write Requests

Table 6.4.: Multidimensional ANOVA test on all parameters including interactions be-
tween two parameters. Only two values were included for each parameter,
leading to a n2m ANOVA and a reduction of the required benchmark runs.
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read (%) write (%)

lower whisker 0.00071 0.00485
lower quartile 4.27833 5.05743
median 8.53218 10.41316
upper quartile 14.45540 26.06969
upper whisker 29.14669 51.32413
mean 10.60307 16.67317

Table 6.5.: Underlying data for the boxplot in Figure 6.5.

reduction of the values when going from full factorial to a n2m experimental design cannot
be supported due to ambiguous results.

6.3. What is the influence of virtualization?

As the IBM System z is a virtualized machine and as virtualization has become an im-
portant technology, the question arises if the influence of virtualization can be captured
by the measurements. To check this, the measurements, which were gathered previously,
are compared to newly run benchmarks with the same I/O load distributed on two virtual
machines. The comparison was done using the relative error as metric.

As the NOOP scheduler shows a much more stable results, this examination is limited to
this scheduler. The CFQ scheduler is left out intentionally. The 560 remaining configura-
tions explained above, are all benchmarked using 100 threads. To check if the benchmark-
ing process can be used even if multiple virtual machines are involved, new benchmark
configurations are created: 560 new configurations are defined using only 50 threads, ex-
actly half of the original 100 threads. Additionally the file set is also halved which means
that the following file set sizes are benchmarked: 500 MB, 12.5 GB, 25 GB, 37.5 GB,
50 GB. For each of these 560 configurations two identical benchmark runs are started si-
multaneously on two virtual machines. The virtual machines are configured identically to
the machine where the original benchmarks were run. The simultaneous execution of the
benchmark is fully automated using the Storage Benchmark Harness which was developed
for this thesis.

By using this setup, the load which is generated by the benchmarks should be identical in
the one virtual machine case and the two virtual machine case. Three results exists per
configuration: The result from the original run on a single virtual machine and the results
from the two virtual machines when running in parallel. Under ideal conditions, one can
expect that the mean response times of all three benchmark runs are identical. To check
if this assumption is true, the relative error is calculated as following:

rError =

∣∣∣∣∣ dualVM1+dualVM2
2 − singleVM

singleVM

∣∣∣∣∣
In this definition, ”singleVM” is the mean response time of the requests when running on a
single virtual machine. These are the results from the original measurements. ”dualVM1”
and ”dualVM2” are the mean response time gathered when the benchmark was run on
two virtual machines simultaneously. This definition means that the mean of the results
of the dual virtual machine case is compared to the single virtual machine case using the
relative error. The ”singleVM” variable contains the results from the configuration where
the thread count and the file set size was doubled comparing to the configuration which
was used when obtaining the ”dualVM1” and ”dualVM2” data. The read and the write
requests are aggregated separately because of their different behavior.
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Figure 6.5.: Boxplots and CDF for the relative errors of the read and the write requests.
The relative error between the case when running the benchmark on two
separate virtual machines and the case when running a single benchmark on
a single virtual machine is depicted here.

Figure 6.5 shows the results of this analysis: The relative errors of all configurations was
included in the two boxplots and in the CFD: One boxplots contains the relative errors of
the read requests and one boxplot contains the relative errors of the write requests. The
mean is 10.6% for read requests and 16.6% for write requests. This can be regarded as
good values, although these number suggest that the assumption made above cannot be
fully supported. When looking at the boxplot more detailed, a different behavior between
read and write requests can be shown: For the read requests, 50% of the configurations
have a relative error in the quite narrow range between 4.2% to 14.4%. This also means
that the outliers, which have their maximum at 67.1%, contribute a lot to the high mean
relative error. When looking at the CDF, it becomes clear, that about 80% of the samples
have a relative error below 18%. Later in this section, the reasons for this behavior are
analyzed.

When looking at write requests, the 50% interval is between 5.0% and 26.0%. This means
that, compared to the read requests, the majority of the configurations have a huge varia-
tions in their relative errors. Based on the numbers, one can conclude that the assumption
made above does only hold in a restricted way for write requests.

The question where these high relative errors results from is discussed next. To analyze
this, the configurations are split according to their read percentage. The results can be
found in Figure 6.6. For the read requests, depicted in the upper part of the diagram, the
0% read percentage has no boxplot. The reason for this is, that with a read percentage of
0%, no read requests were issued and therefore no relative error could be calculated. For
the same reason there is no boxplot for the 100% read percentage and write requests.

When looking at the read requests, it becomes clear that for pure workloads, the relative
error is very low. Pure workloads are workloads with only read or only write requests. For
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Figure 6.6.: Boxplots comparing the relative errors depending on the read percentage. The
read percentage is the amount of operations which are read requests.
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the read requests, the mean relative error for pure read workloads is 2.8% which is a very
good value. When decreasing the read percentage and therefore increasing the amount of
write requests issued, the mean relative error and its variation increase significantly.

For write requests, the relative error is also quite low for a pure write workload: The mean
relative error for the configuration with a read percentage of 0% is 6.0% and the variation
is quite small. In contrast to the read requests the error and especially the variation goes
up very fast when increasing the read percentage.

Although the configurations were chosen to produce the same I/O load on the system in
total, the results are not clear: It can be concluded from the numbers and figures presented
above that this assumption can only be fully supported for pure workloads. For all other
workloads, especially for write requests, the relative error is too high.
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7. Performance Modeling

7.1. Evaluation and Analysis of Modeling Results

One of the major tasks of this thesis is the generation of storage performance prediction
models. As the generation is fully automated, the question of the quality of the models
can be discussed in detail. The following sections discuss the question of interpolation and
extrapolation of the regression models.

The models, whose quality is analyzed in the following sections, are generated based on the
1120 configurations defined in Section 5.1. Each of these configurations is benchmarked
five times. The mean of the mean response time of all repetitions is recorded for each
configuration. This leads to a total of 1120 samples for the regression model creation. The
repetitions are not used separately but aggregated because of the short benchmarking time
and huge differences in the repetitions as discussed in Section 6.1. If longer measurements
are available it would be possible to include these repetitions in the modeling process.
Two separate models are generated for read and write requests. This is done because read
and write requests have a completely different behavior and different characteristics.

Four different regression techniques are used to generate nine regression models. An unique
identifier is given to each of these nine models for referencing purposes.

• Linear Regression (as explained in Section 4.3.1):

– lm: A linear model is trained using only the five input parameters. Multiple
authors state that this regression technique is inappropriate for modeling stor-
age performance. For this reason no sufficient model quality can be expected.
The model is nevertheless included for comparison reasons and to prove the
assumptions which have been made during the discussion of the influence of
the parameters in Section 6.2.

– lm 2param inter: This linear model contains the five input parameters and
also the ten interaction terms between pairs of two parameters. This leads to a
total of 15 coefficients which have to be computed. This enables the model to
adapt to interactions between two parameters.

– lm 3param inter: This model additionally contains the interaction terms be-
tween three of the parameters. There are 10 of these terms. This leads to a
total number of 5 + 10 + 10 = 25 terms in the model. This setting allows the
model to additionally include interactions between three parameters.
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– lm 4param inter: Similar to above, this model contains the interactions be-
tween up to four parameters. There are five of these interaction terms which
leads to a total number of 5+10+10+5 = 30 terms in the model. The inclusion
of the interactions allows the model to even model interactions between four
parameters.

– lm 5param inter: This model includes everything of the above model plus a
single term modeling the interactions between all five parameters. For this
reason the total number of terms is 5 + 10 + 10 + 5 + 1 = 31 terms. This is the
highest number of terms possible for five parameters.

• Multivariate Regression Splines (as explained in Section 4.3.2 for the statistical back-
ground):

– mars: This MARS model was trained allowing no interaction terms. This means
that the degree parameter of the MARS algorithm was set to 1. This makes
this model comparable to the lm model above which also does not contain
interaction terms.

– mars multi: For this MARS model the degree parameter was set to a value of
five. This extension allows the MARS algorithm to choose interaction terms
between up to five parameters. This extends the list of possible terms but does
not mean that these term are necessarily included in the final model. This
setting allows the MARS model to include the same interaction terms as the
lm 5param inter linear regression model. For the MARS algorithm this setting
allows to choose the actual terms for all interaction terms, including those using
two, three, four, and five parameters.

• Regression Tree (as explained in Section 4.3.3 for background information) cart: A
regression tree is trained on the data using the cart algorithm.

• M5 (as explained in Section 4.3.4 for detailed explanation) m5: An M5 regression
tree with attached linear models trained using the training samples.

All other configuration parameters of the regression techniques are set to their implemen-
tation defaults. In Section 7.2.3 these configuration parameters are further examined.

All regression techniques except CART are not designed for non interval scales. Some of
the parameters discussed in this thesis are on a nominal scale. This includes the scheduler
and the sequential/random access flag. To model these nominal parameters, a classifica-
tion model would be a better choice. The problem here is that classification models do
not support interval scales. For this reason the nominal parameters are transformed to an
interval scale by assigning integer values to each level. For the sequential/random access
flag a new parameter ”sequentialAccess” is created. It has the value ”0” for sequential
access and ”1” for random access. The scheduler parameter is transformed into a ”sched-
ulerNOOP” parameter. This parameter is ”1” if the scheduler is NOOP and ”0” if the
scheduler is CFQ. This approach can be extended to more values, for example if a third
scheduler had been benchmarked.

The quality of the models can only be judged using samples which were not used in the
training process (see Section 4.5 for the reasons). The samples which were not used are
called the training set. By calculating the predictions of the models for this training set
and then comparing the predicted with the actual values the model quality can be judged.
For this process different metrics are used: The root mean square error (RMSE) and the
medium absolute percentage error (MAPE). For their differences see Section 4.4. By using
these metrics, the quality of the models is an indication for the generalization ability. The
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 11.51 87.02 8.77 66.32
lm 2param inter 4.80 31.40 3.26 18.12
lm 3param inter 3.13 16.72 2.62 10.35
lm 4param inter 2.95 13.43 2.56 9.26
lm 5param inter 2.96 13.47 2.56 9.19
cart 6.16 38.40 5.20 38.11
mars 11.54 86.36 8.75 66.84
mars multi 4.86 34.34 2.86 16.00
m5 1.69 6.49 0.81 4.24

Table 7.1.: Underlying data for the boxplots in Figure 7.1, which show the comparison of
the interpolation abilities of the regression models when tested using 10-fold
cross–validation.

generalization ability is split into two parts: The generalization ability within the modeled
ranges, the so–called interpolation and out of the ranges, the so–called extrapolation.

The results of the following sections are later summarized in Section 7.1.7.

7.1.1. How good is the interpolation of the regression models when using
synthetic test sets?

To check how good the regression models interpolate, the 1120 input samples are divided
into two groups: 90% of the data is used to train the model and 10% of the data is used
to check how good the model generalizes. Ten of these training–test pairs are generated.
Then each model specified above is trained using the ten training sets and tested using
the ten test sets. RMSE and MAPE are used as metrics. This leads to ten values for both
model metrics for each of the nine models. This process assures, that for comparability
reasons, each model is trained using exactly the same training data. Although the goals
seem to be different, this approach is the same as 10-fold cross–validation (see Section 4.5
for an explanation). This process is needed because the naive approach, to build a model
using the whole data set and then take some test samples out of this set to check the
models quality, is not an acceptable way. As explained before, this process would not
detect an overfitted model.

Figure 7.1 contains boxplots for each model and each metric. As there were separate
models for read and write operations, two boxplots exist for each model and each metric.
Both metrics produce smaller values if the model is better. Each boxplot includes the
results of the ten validation runs. When comparing the models, the mean of the ten cross–
validation runs is used. The mean is depicted as a white dot in the box plots. Table 7.1
contains the underlying data.

Although the definitions of the metrics differ, they lead to the same order in the models.
Both metrics clearly identify the M5 model as the model with the best generalization
ability. The M5 model (m5) performs very well: For the read model, the mean absolute
percentage error (MAPE) is 6.49% and 4.24% for the write model. This means that the
average prediction error is 6.49% or 4.24%. The root mean square error (RMSE) is 2.96 ms
for the read model and 0.81 ms for the write model. These results are very good, especially
when considering the complexity of the system. The M5 model is able to adapt very well
to the test data and generalize.

The second best model is the linear regression model which includes all interactions up
to five parameters (lm 5param inter): With a MAPE of 13.47% and 9.19% for read and
write models and an RMSE of 2.96 ms and 2.56 ms respectively, it performs significantly
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Figure 7.1.: Comparison of the quality of models generated using the full data set. Two
different metrics were used: Root Mean Square Error (RMSE) and Medium
Absolute Percentage error (MAPE).
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worse than the M5 model. Nevertheless these results are also very good, especially when
keeping the simple nature of the linear regression models in mind. It is interesting to
see that a linear regression is sufficient for adapting to the rough structure of the storage
performance data.

The inclusion of the single interaction term which consists of all parameters in the lm -

5param inter model does not provide a significant improvement. The lm 4param inter

model which does not include this term has only a 0.04% (read model) or 0.07% (write
model) lower MAPE and a 0.01 ms (read model) or 0.003 ms (write model) lower RMSE.
The differences are so small that one can conclude that the interaction between all five
parameters does not play a role when predicting the storage performance.

It might seem surprising that more sophisticated techniques like MARS or CART did not
perform better: The MAPE of the multidimensional MARS model, which can include the
same interaction terms as the lm 5param inter, has a MAPE of 34.34% and 16.00% which
is about the double value of the linear model and more than four times the value of the
M5 model. The values them–selves are not very good but could be acceptable, depending
on the use case of the models. They can be used for a rough estimate. The reason for this
behavior is discussed later in Section 7.2.1 where the modeling techniques are compared.

When comparing read and write models, the write model are better for all modeling
techniques. This results from the benchmark results: They are more stable and easier to
predict for write requests. The reason for this behavior is mainly the smaller cache for
write requests compared to the cache for read requests: The write cache is only 2 GB in
size, whereas the read cache is 50 GB large.

In general the models perform very good. It must be kept in mind that a complex storage
system with many layers is modeled. A MAPE of 6.49% is acceptable for most uses of the
model. Later in Section 7.2.2 a detailed comparison between the different model techniques
is done.

7.1.2. What interpolation abilities do the regression models show when
being tested using newly collected samples?

While the previous question analyzes the interpolation abilities of the regression models
using a synthetic test set generated from the existing samples, this section takes another
approach: It uses newly collected benchmark results.

For this section the whole 1120 samples are used to train the nine models. This is a slight
increase in the training samples: In the previous section, the models are trained using
1108 samples (90% of 1120), this time the whole 1120 samples are used. To verify the
interpolation abilities of these models, new samples are collected. The configurations of
these samples are composed as follows:

• The block size is randomly selected from the range 4 kB to 32 kB.

• The read percentage is randomly selected from the range 0% to 100%.

• The file set size is taken randomly from the range of 1 GB to 100 GB.

• The sequential access flag is randomly chosen between random access and sequential
access.

• The scheduler is randomly chosen out of the two available schedulers NOOP and
CFQ.

All other benchmark settings remain at the same values which are used to obtain the
original results. As the FFSB benchmark only supports block sizes which are a multiple
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 13.83 79.34 9.25 62.28
lm 2param inter 6.20 25.04 3.05 16.96
lm 3param inter 4.68 15.60 2.57 10.56
lm 4param inter 4.81 13.85 2.61 10.05
lm 5param inter 4.81 13.87 2.60 10.01
cart 9.19 35.28 4.68 33.97
mars 13.19 79.49 9.23 64.65
mars multi 6.49 28.52 2.84 16.64
m5 3.56 9.27 2.44 10.39

Table 7.2.: Comparison of the interpolation abilities when using 200 newly collected ran-
dom samples. This is the underlying data for the bar plots in Figure 7.2.

of 512 bytes the block sizes are rounded to the nearest 512 byte step. Because the file set
is composed out of files with a size of 16 MB, the file set size is rounded to the nearest
16 MB step. All other values are left at their randomly selected values. This means that
file set size and read percentage can take any value in the mentioned range. No rounding
is done.

This approach randomly selects configuration within the benchmarked range to test the
interpolation of the models. 200 configurations are randomly composed out of the speci-
fication above. Each of these configurations is benchmarked in five runs each lasting for
one minute. The results of the five runs are averaged. The approach of benchmarking new
samples can be regarded as more realistic compared to the previous section: It simulates
the later use of the models where other values than those benchmarked are predicted using
the models.

Figure 7.2 and Table 7.2 contain the results for this interpolation test. The results are very
promising: The samples are collected purely randomly and it was unclear what behavior,
for example, a randomly selected block size has on the results. The M5 model again
performs very well: The RMSE is 3.56 ms for the read model and 2.44 ms for the write
model. The MAPE is 9.27% and 10.39% respectively. When compared to the previous
section these results are worse because of the random gathering of the results.

When looking at the linear regression with all interaction terms the MAPE is 13.87% and
10.01% for the read and the write models. The RMSE is 4.81 ms and 2.60 ms respectively.
These are very good values which are only slightly worse than those of the synthetic test
in the section before.

When regarding the multidimensional MARS model, the values are 6.49 ms and 2.84 ms
for the RMSE and 28.52% and 16.64% for the MAPE. Like in the section before, these
values are too high to be regarded a good fit.

The experiment conducted here shows more expressiveness than the one in the section
before. Both sections show that the linear regression model containing all interaction
terms and the M5 model have an acceptably low error for both, read and write models.
One can conclude that the interpolation ability of the models is good. As the interpolation
is one of the most important features, this first major result of the thesis is very promising.

In the next section, the discussion is extended to those values which are out of the range
of the parameters. This means that the extrapolation abilities of the models are checked.
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Figure 7.2.: Comparison of the interpolation abilities of the nine regression models tested
using 200 newly collected randomly selected samples.
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 11.32 100.32 8.73 74.67
lm 2param inter 5.55 53.68 4.86 25.97
lm 3param inter 3.76 28.09 4.81 23.05
lm 4param inter 3.68 23.74 4.80 21.82
lm 5param inter 3.67 23.22 4.76 21.32
cart 7.42 57.51 7.61 53.18
mars 11.40 101.62 9.38 81.81
mars multi 4.62 44.86 5.23 29.14
m5 2.96 15.67 4.91 20.99

Table 7.3.: Comparison of the extrapolation abilities when reducing the original sample set
by removing the extreme values and reuse the removed samples for training.
This is the underlying data for the bar plots in Figure 7.3.

7.1.3. How good do the regression models extrapolate when using syn-
thetic test sets?

This question discusses the quality of the predictions out of the modeled range. This plays
an important role, because not all possible configurations can be benchmarked beforehand.
Again, the metrics for this question are RMSE and MAPE. Because some parameters
have a closed range, extrapolation does not make sense for those parameters: The read
percentage is already benchmarked from 0 to 100% and obviously no predictions out of
this range can be made. The sequential/random access flag cannot be extended to more
values. The prediction of values for other schedulers out of the existing data is not feasible.
For the five parameters which are analyzed in this thesis the file set size and the block size
are the only two parameters where extrapolation is an issue.

To test the extrapolation abilities of the models, this section takes a synthetic approach
which solely relies on the already collected samples. In contrast to this, the next section
judges on the extrapolation using newly collected samples. The advantage of this approach
is that no new samples have to be collected. As the benchmarking of new configurations
is time consuming, judging on the extrapolation without gathering new results can be a
desirable option.

All configurations which meet one of the following four conditions are removed from the
sample set:

• The block size is 4 kB.
• The block size is 32 kB.
• The file set size is 1 GB.
• The file set size is 100 GB.

This procedure removes the extreme values for both, block size and file set size from the
sample set. 616 of the 1120 samples are removed. This leads to a remaining sample set
of 504 elements. The reduced data set is then used to train the nine regression models
defined above. The regression models which were built using the reduced data set were
then tested. The test data consists of 100 randomly selected samples which were drawn
out of the 616 samples which were removed in the initial step. This approach reduces the
training set to get the possibility to test using the extreme values and therefore judge on
the extrapolation abilities of the models. The disadvantage of this approach is that only
504 samples were available for the model creation. Especially for regression techniques
which need a lot of data to fit the model, the results are not expected to be very good.
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Figure 7.3.: Extrapolation abilities of the regression models, trained using a reduced data
set and tested using the left out samples.
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The four bar charts in Figure 7.3 and the Table 7.3 show the results of this test. The
overall results from this approach are very good considering the conditions under which
the models have been generated.

The M5 model again performs the best: The MAPE is 15.67% for the read model and
20.99% for the write model. The RMSE is 2.96 ms and 4.91 ms respectively. In contrast
to the previous section, this time the read model performs better than the write model.
The write model suffers more from the reduction of the training set.

For the linear model containing all interactions possible (lm 5param inter), the RMSE
is 3.67 ms for the read model and 4.76 ms for the write model. The MAPE is 23.22%
and 21.32% respectively. Again the write model does not perform better than the read
model as observed in the section before. The advantage of M5 compared with the linear
regression model gets smaller if the training set is reduced. For the write models, the
RMSE of the linear regression model is even lower than the RMSE of the M5 model.

One can expect a better extrapolation if the model is built using the full sample set and
additional values which are out of the range of this original sample set are used to test the
model. This approach is taken in the next question.

7.1.4. How is the extrapolation ability of the regression models when
testing using newly collected data?

This section focuses on another approach on how to measure the extrapolation abilities
of the regression models. In contrast to the question before, where the existing data
is used to judge on the extrapolation abilities, this section focuses on the more natural
approach: New measurements are obtained and used to test the model. As in the previous
sections, the metrics are RMSE and MAPE. The metrics are calculated based on the
newly generated test samples.

This approach leads to the fact that the whole 1120 samples which are described in Sec-
tion 5.1 are used to train the nine regression models. To test the extrapolation, newly
collected benchmark results are used: The new experiments are randomly generated using
the following schema:

• Block size: The block size is randomly chosen out of the following set: 1 kB, 2 kB,
36 kB, 40 kB, 48 kB and 64 kB. These values are chosen because they are not included
in the original block size range which has its minimum at 4 kB and its maximum at
32 kB.

• File set size: The file set size is also randomly sampled using the following set:
256 MB, 512 MB, 110 GB and 130 GB. The original range of the file set size is
1 GB to 100 GB. Values larger than 130 GB can not be benchmarked due to size
constraints: The benchmarked storage volume cannot hold more than 130 GB of
data.

• Scheduler : Random selection of either CFQ or NOOP scheduler.

• Read percentage: The same value as in the original experiments: From 0% to 100%
in seven steps.

• Sequential access: Both, random and sequential access were benchmarked.

This schema uses the original values for all parameters except for the block size and the
file set size. Out of these 6 · 4 · 2 · 7 · 2 = 672 possible configurations, 200 configurations
are randomly selected as test set. This test set is benchmarked running for five times
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 17.59 97.27 15.83 107.14
lm 2param inter 10.67 53.36 13.62 77.82
lm 3param inter 9.38 32.83 14.89 55.67
lm 4param inter 10.60 20.52 15.42 42.12
lm 5param inter 10.57 20.16 15.41 41.93
cart 14.41 61.29 12.50 74.89
mars 17.41 95.92 16.08 110.33
mars multi 8.65 41.01 12.90 64.59
m5 5.23 12.58 13.72 45.51

Table 7.4.: Comparison of the extrapolation abilities when using the original models and
testing using random newly benchmarked data. This data is depicted as bar
plots in Figure 7.4.

one minute. The results from these five runs are averaged like the original values in the
previous sections.

All 200 test samples are predicted using the nine models. Then the predicted and the
actual response time are compared. Using these two values, the RMSE and MAPE for
each of the models are calculated. Figure 7.4 and Table 7.4 contain the values for each of
the models.

For this analysis the focus lies on the linear regression model with all interaction terms
and on the M5 model. These models are focused because they have already proven to be
the best performing out of the nine models benchmarked. Additionally they also perform
best in terms of the extrapolation in this question and the question before.

For the read model, the results are still in an acceptable range when looking at the MAPE:
It is 20.16% for the linear regression model and 12.58% for the M5 model. The results are
even slightly better than those of the previous section. In contrast to this, the RMSE is
very high for the linear model: The values have nearly tripled comparing to the previous
section. The M5 model does not show such a heavy increase in the RMSE. Nevertheless,
the value is also almost doubled.

For the write model, the results are not promising: The MAPE is over 40% for both,
the linear model and the M5 model. The RMSE is over 12 ms. These bad extrapolation
abilities and the huge difference between the read and the write model results from the
fact that the configurations predicted are not within the modeled range. These parameters
show a different behavior which could not be included in the models because the training
data did not cover these areas. When comparing the MAPE values, the linear regression
model even performs better than the M5 model for write requests.

Such a big increase in the RMSE can only result from some samples which were predicted
with a very big error. By inspecting the prediction results in detail it can be shown
that most of the RMSE results from the upper block sizes. The three block sizes 40 kB,
48 kB and 64 kB show very bad predictions. The reason for this behavior is depicted in
Figure 7.5.

The test set is split into two sets using the block size as condition: A lower block size set
is constructed containing the two block sizes smaller or equal to 2 kB. The upper block
size test set contains the block sizes greater or equal to 36 kB. When looking at the RMSE
values for the read model the reason for the high overall RMSE values for the combined set
becomes clear: As explained above the higher block sizes have a heavily increased RMSE
compared to the lower block sizes. The reason for this behavior lies in the system limits:
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Figure 7.4.: Extrapolation abilities of all models, tested using randomly newly bench-
marked data.
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Figure 7.5.: Extrapolation abilities for read requests of the linear model including all in-
teractions (lm 5param inter) and the M5 model (m5). The test data was split
into two sets: a ”low” set containing the block sizes ≤ 2 kB and the ”high”
set containing the block sizes ≥ 36 kB. The metric depicted is RMSE.

During the benchmarking it showed that the fiber channel link to the storage device is
fully saturated when using block sizes bigger than 36 kB. This introduces a non linear
relationship which is not included in the models because no data containing block sizes
bigger than 36 kB is used for their training.

The results from this question show that the extrapolation abilities of the models are not
good. The main reason for this is that the systems behavior in the upper block sizes was
not included in the models. This makes extrapolation very hard for the models. The
extrapolation would become better if the upper block sizes had be included in the models.
This change also requires a regression technique which can model the non linearity, for
example MARS.

7.1.5. How many measurements are needed for an accurate model?

As explained above, 1120 samples are used to generate the models from the previous
sections. It takes a long time to gather these results. For this reason, the question if similar
regression models could be constructed using less samples and less detailed measurements
arises. To answer this question, the same metrics as for the previous questions are used.

To check if a smaller number of samples is sufficient for the model generation, the following
two subsets of the original sample set are defined: The first reduced sample set contains
only the two extreme values for each parameter. The second subset contains three values
by adding the middle value between the two extremes. For those parameters which only
have two values (sequential access and scheduler), only two values are included. A special
case is needed for the read percentage: A value of 0% leads to no read request issued at
all. For this reason taking only the two extremes 0% and 100% into consideration does not
work. Therefore the second lowest and second highest values are chosen. For the second
reduced sample set a third point in the middle is added.

The leads to the two configurations red1 and red2 shown in Table 7.5. Additionally the
table contains the number of configurations which are included in the sample set. When
comparing these numbers to the original count of 1120 samples both counts show a great
reduction. The benchmark time would have been heavily reduced if only these samples
had been collected.
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red1 red2

Block size 4 kB, 32 kB 4 kB, 16 kB, 32 kB
Read percentage 25%, 75% 25%, 50%, 75%
File set size 1 GB, 100 GB 1 GB, 50 GB, 100 GB
Access random, sequential random, sequential
Scheduler NOOP, CFQ NOOP, CFQ

# of configurations 32 108

Table 7.5.: Two reduced samples sets which are used to test if accurate models can be
generated using a smaller number of samples.

Using these two reduced test sets, four new sets of models are generated: One for every
reduced test set and one for read and write requests. The models are tested using 200
random samples from the original 1120 sample set. Figure 7.6 and Figure 7.7 contain the
results of this experiment as bar plots and the raw values as table. There are multiple
things to notice when looking at the figures:

CART performs very badly: With a MAPE of 100% and an RMSE of over 15 ms the
results get at lot worse compared to the model generated from the full data set. Although
the results get better when a third point is included in the red2 sample set the results
remain bad: The MAPE is 43% and the RMSE is 7.8 ms. This behavior can be easily
explained: The algorithm only splits a node if it represents enough samples. This leads
to the fact that CART does not perform very well when operating in a situation where
not enough data is available. When looking at the CART model itself this becomes even
clearer: For the red1 data set the CART model only contains three nodes with two leaves,
for the red2 model it contains 15 nodes with 6 leaves. Both are not large enough to model
the complex behavior of the system.

MARS also has its problems with the reduction of the training set. Especially with the
smaller red1 set the MAPE goes up to 48% for read and 28% for write requests. When
trained using the original data in the previous section, these values are 36% and 17%. In
contrast to this, MARS performs quite well when using the slightly bigger red2 test set.
With a MAPE of 36% and 19% the quality of the models are nearly the same as when
trained using the full data set.

The M5 model, which has proven to be the best in all previous situations also has its
problems. When looking at the smaller training set red1, the M5 model also has a MAPE
of over 100% and an RMSE of 14.5 ms. Although the M5 algorithm was explicitly designed
for cases with many parameters and a low number of training samples, the 32 samples are
not enough for the M5 algorithm to generate an acceptable model. When looking at
the second training set red2, the situation has changed: The inclusion of additional 76
samples in the training set makes the M5 model perform much better: The MAPE goes
down to 16.7% for the read model and 14.7% for the write model. The RMSE is also
heavily reduced. From these observation it become clear that M5 needs at least some data
to produce good results.

The linear regression model performs quite well. In fact the linear regression models with
many interaction terms do not suffer much from the reduction of their training data. The
lm 5param inter model has a MAPE of 14% for the read model and 10% for the write
model when using the red1 training set. The MAPE value for the original model which
was trained using 35 times more data is only slightly better: 13% for the read model and
9% for the write model. This can be explained easily: The linear model cannot adapt to
additional points. If the two extremes are measured well enough, then the linear regression
can find a very good model. This is only true if there is a linear relationship in the data.
In the previous section it was shown that there is in fact a linear relationship in the
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 13.61 80.76 7.95 57.87
lm 2param inter 5.96 33.42 3.61 18.22
lm 3param inter 4.24 17.78 3.19 10.95
lm 4param inter 4.18 14.63 3.19 9.78
lm 5param inter 4.18 14.64 3.19 9.78
cart 16.08 112.57 10.20 62.62
mars 14.19 76.99 8.07 56.67
mars multi 6.96 50.92 4.77 29.48
m5 14.56 104.46 4.88 24.24

(c) Data

Figure 7.6.: Comparison of the quality of the nine regression models built using the reduced
data set red1. The models were tested using 200 randomly drawn samples
from the complete sample set.
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 13.39 79.79 8.00 61.95
lm 2param inter 5.31 32.37 3.31 18.19
lm 3param inter 3.27 15.50 2.81 9.68
lm 4param inter 3.13 12.30 2.78 8.53
lm 5param inter 3.13 12.29 2.79 8.51
cart 7.89 43.61 5.83 32.96
mars 13.89 82.89 8.14 59.87
mars multi 5.05 34.35 3.97 17.15
m5 3.82 16.70 2.80 14.66

(c) Data

Figure 7.7.: Comparison of the quality of the nine regression models built using the reduced
data set red2. The metrics were calculated using 200 randomly drawn samples
from the whole 1120 sample set.
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benchmarked ranges.

To summarize this answer: If there is a pure linear relationship, the reduction of the
training samples does not produce a much bigger test error. This is only true for those
models which are based on linear models, namely linear regression using least square and
MARS. Other regression techniques like CART do not work well with a reduced data
set, they need as much data as possible. Although based on linear models, M5 needs a
minimum amount of samples to calculate a good model.

7.1.6. How can the regression modeling of nominal scale parameters be
improved?

This question discusses the effects of the nominal scale parameters on the quality of the
models. The metrics which are used are again MAPE and RMSE.

As explained at the beginning of this chapter, some parameters are not on an interval scale
but on a nominal scale. Two out of the five parameters evaluated in this thesis are on a
nominal scale: The I/O scheduler with its two benchmarked values NOOP and CFQ. This
is not a fixed set: There are other schedulers which could be included in the benchmarking
process and therefore in the regression models. The other parameter on a nominal scale
is the sequential access flag. It can only take the values 1/True and 0/False.

As explained previously, all regression techniques examined in this thesis except CART do
not support nominal scale parameters. For this reason the nominal scale parameters are
transformed to an interval scales by assigning fixed values. This is only a work–around for
the inability of the models. For this reason this section contains a new approach to these
parameters:

The samples collected are divided according to the values of the nominal scale parameters:
Four new sample sets are created:

• Sequential access and NOOP scheduler

• Random access and NOOP scheduler

• Sequential access and CFQ scheduler

• Random access and CFQ scheduler

The four sample sets are of equal size. Each of the four sample sets is used to train and
test the nine regression models which are used throughout this thesis. The validation
is done by using 10-fold cross–validation. This process leads to four times nine models:
Nine models for each of the four sample sets specified above. For each of the regression
techniques and each of the four data sets, the MAPE and the RMSE are collected. To
compute the MAPE and RMSE of the complete and original data set which is used in the
other sections, the MAPE and RMSE values from the four models are averaged for each
of the regression models.

Each of the regression models contains three remaining parameters: As the scheduler
and the sequential access flag have constant value in each of the four sets, the remaining
parameters are the file set size, the block size and the read percentage. All these remaining
parameters are on an interval scale and are therefore better suited for the regression
techniques.

If additional schedulers were benchmarked or more nominal parameters were examined, the
number of models would increase linearly: Benchmarking another scheduler for example
increases the number of models to six.
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Figure 7.8.: Computed MAPE and RMSE values if separated models are built for each
value of nominal scale parameters. This means that four models were created
and the average of the RMSE and MAPE is depicted here.

Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 3.62 20.51 2.58 12.72
lm 2param inter 2.71 13.91 2.24 9.86
lm 3param inter 2.70 13.35 2.18 9.20
lm 4param inter 2.70 13.35 2.18 9.20
lm 5param inter 2.70 13.35 2.18 9.20
cart 3.52 19.63 2.58 15.36
mars 3.18 17.89 1.98 10.76
mars multi 1.40 5.82 0.71 3.86
m5 1.48 6.21 0.81 4.75

Table 7.6.: Generalizationa abilities of regression models which were built separate for the
values of the nominal scales. Figure 7.8 contains a graphical representation.
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Figure 7.9.: The split models, where four different models are used, compared to the origi-
nal models using a single model. A negative value means an improvement due
to the splitting, a positive value means decline due to the splitting.
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The results of this approach can be found in Figure 7.8 and in Table 7.6. The linear models
with interactions between more than two variables do not differ at all. The reason for this
is, that there are only three parameters included in the models which means that the
lm 3param inter, the lm 4param inter and the lm 5param inter models are identical.

In Section 7.1.1, the same data was used to build one model whereas in this approach
four models were generated. Figure 7.9 contains a comparison between the new models
generated in this section and the original simple models without the splitting. When
comparing the results, it becomes clear that all models benefit from the approach taken
here: Those models which do not contain interaction terms show the hugest improvements:
For the linear regression model without interactions the MAPE goes down from 87.02%
to 20.51% for the read model. For the RMSE, the decrease is from 11.51 ms to 3.62 ms.
The same improvements can be found in the data for CART: The MAPE goes down from
38.40% to 19.63%. The behavior of the MARS models shows an interesting change: The
MAPE of the MARS read model without interactions improves from 86.36% to 17.89%.
The multidimensional MARS model has a MAPE of 5.82% for the read model and 3.86%
for the write model. The RMSE is 1.40 ms for the read model and 0.71 ms for the write
model. These values are better than the more sophisticated M5 algorithm. The M5 models
do not improve much: The MAPE goes down from 6.49% to 6.21%. Due to the huge change
in the multidimensional MARS model, it performs best out of the nine models compared.
Similar to the M5 model, the linear regression models with higher levels of interactions
also do not show a huge improvement: For the lm 5param inter, the MAPE goes down
fro 13.47% to 13.35% for the read model.

The numbers show, that those models which did not perform very well using only a single
data set improve a lot when using split data sets for the nominal scale parameters. Non
of the models suffered from this change.

While this approach leads to a better performance of some algorithms it introduces another
level of complexity. For some applications of the models it might be better to have a single
model for all parameters, while for other uses, it might be acceptable to have four or more
models.

A further approach which is possible but not evaluated here, is to combine different regres-
sion techniques: If, for example, one regression technique works better for sequential access
and another works better for random access, these different models could be combined.

7.1.7. Summary

This section gives an overview of the answer to five previous research questions. To
summarize the experiments which have been conducted in the previous sections, Table 7.7
contains a row for each section. It is specified which samples have been used for training
and which have been used for testing. Additionally the results (MAPE and RMSE) of
both, the read and the write models are noted. The metrics included in the table are
those of the best performing model in the question. The term ”Original sample set”
references the set containing 1120 samples as explained in the introduction of this chapter.

7.2. Evaluation and Analysis of Regression Techniques

7.2.1. How does the generalization ability of the different regression tech-
niques compare?

Nine different models using four different modeling techniques are evaluated in this thesis.
This section discusses how these models compare in terms of the quality of fit and why
the models show this behavior.
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Read Model Write Model
RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

Interpolation (synthetic) (Section 7.1.1) 1.69 6.49 0.81 4.24
Trained & Tested using: 10-fold cross–validation
using the original sample set
Best model: M5 model

Interpolation (Section 7.1.2) 3.56 9.27 2.44 10.39
Trained using: Original sample set
Tested using: 200 randomly generated samples
from the parameter ranges
Best model: M5 model

Extrapolation (synthetic) (Section 7.1.3) 2.96 15.67 4.91 20.99
Trained using: Original sample set with extreme
values of each dimension taken away (504 sam-
ples)
Tested using: Random samples drawn from the
extreme values taken away in the training
Best model: M5 model

Extrapolation (Section 7.1.4) 5.23 12.58 13.72 45.51
Trained using: Original sample set
Tested using: 200 randomly selected samples
from outside the parameter ranges
Best model: M5 model

Reduced Sample Set (Section 7.1.5) 4.18 14.63 3.19 9.78
Trained using: Reduced sample sets (32 samples)
Tested using: 100 randomly selected samples
from original sample set
Best model: Linear regression model including all
interactions (lm 4param inter)

Trained using: Reduced sample set (108 samples)
Tested using: 100 randomly selected samples
from original sample set
Best model: Linear regression model including all
interactions (lm 5param inter)

3.13 12.29 2.79 8.51

Separate models for nominal scale param-
eters (Section 7.1.6)

1.40 5.82 0.71 3.86

Trained & Tested using: 10-fold cross–validation
using the original sample set divided into four sets
using the values of the nominal scale parameters.
Best model: Multidimensional MARS model
(mars multi)

Table 7.7.: Comparison of the different experiments conducted in the previous sections.
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To compare the quality of different models, cross–validation has to be used. In Section 7.1.3
the interpolation strength is evaluated using cross–validation. The same results can be
reused for this question. Looking again at Figure 7.1, which compares the RMSE and
MAPE of different models using 10-fold cross–validation, these models can be roughly
grouped into the following three relative categories:

• Worst quality : The simple, one degree MARS model and the simple linear model
without interactions.
• Average quality : The multidimensional MARS model, the CART tree and the linear

regression model containing interactions between two parameters.
• Best quality : The three linear regression models containing interactions between

three and more parameters and the M5 model.

The first observation is that the models without interactions perform badly. This is true
for both, the simple linear model without interactions and the MARS model which can
introduce hinges in the function. There is a simple reason for this behavior: The storage
performance benchmark results heavily dependent on interactions between multiple pa-
rameters. By modeling only the parameters and not their interactions no good model can
be obtained. This is already shown in Section 6.2. An ANOVA is used there to show which
parameters have an influence on the response time. It is shown that the single parameters
are not sufficient to explain the response time. This should be kept in mind for the further
discussion of the regression models. Nevertheless, the linear model performs slightly better
than the MARS model. The main reason for this is the cost–factor in the MARS algo-
rithm: In order to prevent overcomplicated models, the MARS algorithm penalizes each
term and every hinge using a cost function. This means that while the linear regression
model can compute a coefficient for every parameter, the MARS algorithm prevents this
if the introduction of this coefficient does not improve the model enough.

As the multidimensional MARS, the CART tree, and all other linear regression models
except from the simplest one can model higher degree interactions. Thus they perform
better than those models without interactions. As shown by Hastie et al. [HTF11], CART
can be seen as a special case of MARS. It is shown that the MARS algorithm can be
used to construct CART models if further restrictions are applied. This explains why the
multidimensional MARS performs slightly better than CART. Another explanation is the
nature of the models: CART cannot model additive structures but instead must rely on
a chain of conditions. Furthermore CART is even unable to construct linear increasing
functions. It can only model stepwise functions. This introduces a disadvantage for the
CART model as the results of the storage benchmarks are expected to have a linear
relationship which can only difficultly be modeled using stepwise functions. Although
using a simpler algorithm, the linear regression model which includes interactions between
two parameters performs about the same as CART and the multidimensional MARS. The
main reason for this is that the data which was benchmarked and used for the training is
based on a linear coherency.

The best performing models are on the one hand the linear models which include interac-
tions between three, four and five parameters. The addition of the interactions between
three parameters has improved the models a lot which leads to the conclusion that these
interactions still play an important role. This is especially true for the read model where
the difference between the two models is bigger than for the write model. The addition of
the interactions between four parameter does only improve the models in a small amount.
The improvement which results from the addition of the interaction term between all five
parameters can hardly be measured. It is so small that the models must be regarded nearly
identical. Nevertheless, there is a very small difference: The RMSE is 0.006 ms lower and
the MAPE is 0.04% lower for the model including the interaction term between all five
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parameters. The conclusion from this is that this interaction term does not provide any
valuable information to the model. This can be supported by the fact that coefficient of
this term is −1.633 · 10−11, which is very close to zero.

The M5 model shows an impressive result: It outperforms the second best model, the
linear regression model including all interactions with less than two thirds of the RMSE
and MAPE. The combination of the advantages of CART and the linear regression models
leads to very good interpolation abilities. It should be kept in mind that the linear models
which are attached to the leaves of the M5 tree do not include any interactions. This
behavior is solely modeled using the regression tree of the M5 model.

An important question is, why the multidimensional MARS model is modeling the data
so much weaker than the linear models. As the multidimensional MARS model is allowed
to add all interaction terms, one could expect it to be at least as good as the linear models
which have the same constraints. MARS should perform even better as it is not fixed
to strict linear functions but can introduce partly linear functions. The answer to this
question lies in the MARS algorithm: As mentioned above this algorithm introduces a
cost for each term involved. This leads to a reduction of the model to as least terms
as possible. This might even take away whole interaction terms because the algorithm
regards them as too expensive. In contrast to that, the linear regression can introduce a
coefficient for every parameter and every interaction term. No interaction term has to be
left away due to costs. If a term is not needed, the coefficient can simply be zero. This
explains why the linear models perform better than MARS. Additionally the data seems
to be of very linear nature. For this reason, the big advantages of MARS, the partly linear
functions, cannot show their strengths on this data set.

As discussed in Section 7.1.4, configurations other than those benchmarked do not show
this linear behavior: If the block size is increased above the current limit of 32 kB, the
assumption that there is a linear correlation does not hold anymore. This means that the
linear model make a large profit from the current selection of the benchmarking ranges.
If other ranges had been selected for the ranges, the MARS model could have performed
better compared to the linear regression models. Additionally the linear behavior is fixed
to the system benchmarked. One cannot assume that a similar linear correlation between
the parameter can be made on other systems even with the same parameter ranges. A
simple example is a system with only half the bandwidth for the storage device connection.
On such a system the storage connection gets saturated quicker and with lower block sizes.

In general, it should be kept in mind that this comparison is only valid for the nine models
explained above and only for this specific data set. Nevertheless, the approach specified
here can be used on other systems and using other ranges, but the conclusions could be
different.

7.2.2. What are the advantages and disadvantages of the modeling tech-
niques?

This question discusses the advantages and disadvantages of the different modeling tech-
niques apart of the quality which is discussed in the previous question. The metrics which
are used here to facilitate the comparison are:

• Time needed to construct a new model.

• Time needed to predict values.

• Interpretability of the resulting models.

• Complexity of the algorithms and their implementation.
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Modeling Prediction
Model Read Write Read Write

(s) (s) (s) (s)

lm 0.00500 0.00500 0.00167 0.00115
lm 2param inter 0.00800 0.00800 0.00135 0.00135
lm 3param inter 0.01200 0.01200 0.00167 0.00156
lm 4param inter 0.01400 0.01500 0.00188 0.00167
lm 5param inter 0.01500 0.01400 0.00177 0.00177
cart 0.02500 0.02500 0.00115 0.00104
mars 0.04400 0.04400 0.02083 0.02042
mars multi 0.05800 0.05600 0.02125 0.02146
m5 0.14600 0.18100 0.05052 0.05156

Table 7.8.: Comparison of the time needed for the model creation (”Modeling”) and for
the prediction of 1000 samples (”Prediction”). The time needed for both, the
read and the write models is depicted.
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Figure 7.10.: Comparison of the time needed for the generation of a single model of each
of the regression techniques.

While the first two metrics can be compared objectively, the last two metrics can only be
interpreted subjectively.

The time which is needed to construct a new model is important if the models should be
generated on the fly. This approach is taken if preexisting models get refined and adapted
to current conditions while the system is running. Even for the approach taken in this
thesis, where only an offline model generation is done, the generation time is important:
Especially when comparing different modeling techniques, one cannot wait hours for the
models to generate. It should be kept in mind that the time needed for model generation,
and also the time needed for prediction, is dependent on the system configuration where
the models are generated. In this case the analysis is executed on an Intel Core i5 M520
CPU with two cores running at 2.40 GHz. The execution time is clearly bound by the
speed of the CPU and no other processes were running the model creation. The execution
times are stable which means that repeated runs lead to nearly the same results. The
execution time is also dependent on the algorithm implementation, in this case the default
implementations shipped with R are used.

Figure 7.10 and Table 7.8 contain the time needed for constructing a new read and write
model using the regression techniques explained above.
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Figure 7.11.: Comparison of the time needed for the prediction of 1000 samples for each
of the regression techniques.

There is no significant difference between creating a read and a write model. As both
model contain the same amount of data any significant difference would be surprising.
The figures clearly show that the linear regression models are the fastest of the technolo-
gies benchmarked. When comparing the lm and mars models, which both do not include
interaction terms, the mars model is about six times faster. The difference also exists
when comparing the marsMulti model with the lm 5param inter model which both in-
clude every interaction term possible: The linear model is about 4 times faster than the
multidimensional MARS. It becomes clear that the modeling of the hinges has its price.
As these functionality has not proven to be of much value for the data modeled in this
thesis, the run time is another factor which rule out the MARS models in this thesis case.
With an absolute runtime of 0.005 s or about 5 ms the linear model can be computed
easily at runtime. This can be supported by the fact that the current implementation is
using a non–optimized statistical software. The computation of the least square regression
technique can be done very efficiently because of its simple nature. The creation of the
M5 model is nearly three times slower than the multidimensional mars model and nearly
ten times slower than the comparable lm 5param inter model. The generation of the best
performing model has its price. The algorithm has to compute a linear regression model
for every node created. As there are much more nodes created than node later contained
in the results, this can explain the long run time. Additionally, the implementation of M5
is not optimized for performance.

The prediction times are depicted in Figure 7.11 and the underlying values can be found
in Table 7.8. The prediction time plays an important role in online prediction but has
an influence on every application using the models. If the predictions take to long to
be calculated, the models become worthless. The figure shows for each of the models
the duration of the prediction of 1000 samples. This number is chosen to get stable
results, otherwise the runtime would be too small to measure accurately. The models
can be categorized into two groups: The linear regression models and the CART model
show a fast prediction time. The MARS and M5 models are much slower: The difference
between the simplest MARS models (mars) and the most complicated linear regression
model (lm 5param inter) is huge: MARS is eleven times slower than the biggest linear
model. The reason for this slowdown lies in the nature of the MARS models: While linear
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Read Write

(Intercept) 21.95252 13.80373
schedulerNOOP -18.17612 -16.80425
filesetSize 0.00014 0.00009
blockSize 0.00040 0.00045
readPercentage -0.17071 -0.09890
sequentialAccess 7.31739 9.93321

Table 7.9.: Linear regression model without interactions. The table shows the values for
the coefficients for both, the read and the write model. All values rounded to
five digits.

models involve simple multiplications and additions which can be done very effectively on
CPUs, the MARS algorithm needs conditional statements and therefore branches to pre-
dict the values. Especially branches are very expensive on today’s CPU architectures with
their huge pipelines. Another reason for this bad prediction times is the implementation:
The CART algorithm does not perform as bad as the MARS algorithm, although is also
does include conditions. It seems that the implementation of MARS is not optimized for
performance.

The M5 model is nearly another three times slower than the MARS model. It is also 28
times slower than the linear regression models. The complexity of the M5 model has its
price when it comes to the evaluation of both, the regression tree and the linear models.
As explained before, the implementation of M5 is explicitly not optimized for performance.
Nevertheless, with a prediction time of 50 milliseconds for 1000 samples even the M5 model
performs good enough.

The next metric discussed here is interpretability. To compare the interpretability of the
result, six different models are printed on the next pages:

The CART model (compare Figure 7.12) contains a decision tree. By looking at this tree
it is easy to conclude the importance of the parameters: Important parameters are further
up in the tree, towards its root. It is also easy to infer the influences of the parameters
as the split points provide the information how these parameters influences the result.
For example it becomes clear from the tree that there is some important change in the
behavior of the model below a file set size of 64 · 103 = 64 GB. The next file set size
benchmarked below 64 GB is 50 GB. This is exactly the cache size of the IBM DS8700
storage system. This shows that influencing values directly find their way to the CART
model and can be seen easily. The CART model is also the only model which can be
depicted as a figure. All other models cannot be plotted because of their huge dimensions.
As it is often easier to see the coherences in a plotted diagram, rather than in a table full
of numbers, this can be regarded a huge advantage of CART. Additionally, CART is the
only algorithm which can easily adapt to factor levels. As explained above, the scheduler
and the sequential access flag are nominal scale parameters. The CART model can simply
include even parameters containing strings (like the scheduler) in its model. This further
simplifies interpretation as no transformation is needed.

Table 7.9 shows the resulting linear regression models for a simple regression without
interaction terms. Table 7.10 contains a similar table for the linear regression model with
all interactions, including the interactions between all five terms. The three intermediate
models are generated but are not printed here as they show similar results. The tables
show the coefficients for each parameter plus an intercept term. Each of the coefficients
is printed for both, the read and write model. The regression algorithm computes a
coefficient for every parameter. Even terms with very small coefficients (near zero) are
therefore included in the model. None of the coefficients is exactly zero but the absolute
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Figure 7.12.: CART model for the whole data set.
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Read Write

(Intercept) 5.74042 5.01551
schedulerNOOP -0.68947 -0.04302
filesetSize 0.00059 0.00024
blockSize 0.00030 0.00049
readPercentage -0.07190 -0.05869
sequentialAccess 23.81223 17.09872
schedulerNOOP:filesetSize -0.00013 -0.00007
schedulerNOOP:blockSize 0.00008 -0.00002
schedulerNOOP:readPercentage 0.01017 -0.00366
schedulerNOOP:sequentialAccess -26.53845 -20.02582
filesetSize:blockSize -0.00000 -0.00000
filesetSize:readPercentage -0.00000 -0.00000
filesetSize:sequentialAccess -0.00067 -0.00023
blockSize:readPercentage -0.00000 -0.00000
blockSize:sequentialAccess 0.00093 0.00048
readPercentage:sequentialAccess -0.06271 -0.01441
schedulerNOOP:filesetSize:blockSize 0.00000 0.00000
schedulerNOOP:filesetSize:readPercentage 0.00000 0.00000
schedulerNOOP:filesetSize:sequentialAccess 0.00021 0.00006
schedulerNOOP:blockSize:readPercentage -0.00000 0.00000
schedulerNOOP:blockSize:sequentialAccess -0.00088 -0.00044
schedulerNOOP:readPercentage:sequentialAccess 0.12030 0.07434
filesetSize:blockSize:readPercentage 0.00000 0.00000
filesetSize:blockSize:sequentialAccess 0.00000 0.00000
filesetSize:readPercentage:sequentialAccess 0.00001 0.00000
blockSize:readPercentage:sequentialAccess -0.00001 0.00000
schedulerNOOP:filesetSize:blockSize:readPercentage -0.00000 -0.00000
schedulerNOOP:filesetSize:blockSize:sequentialAccess -0.00000 -0.00000
schedulerNOOP:filesetSize:readPercentage:sequentialAccess -0.00000 -0.00000
schedulerNOOP:blockSize:readPercentage:sequentialAccess 0.00001 -0.00000
filesetSize:blockSize:readPercentage:sequentialAccess -0.00000 -0.00000
schedulerNOOP:filesetSize:blockSize:readPercentage:sequentialAccess -0.00000 0.00000

Table 7.10.: Linear regression model with all interaction terms, including those between
two, three, four, and five parameters. The coefficients for both, the read and
write model, are shown in the columns. All values are rounded to five digits.
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20.29673
-18.17612 * schedulerNOOP

+0.0001511071 * h(filesetSize-25600)
-0.0001162011 * h(25600-filesetSize)

+0.0003646261 * h(blockSize-12288)
-0.0005100038 * h(12288-blockSize)

-0.1084117 * h(readPercentage-50)
+0.3249405 * h(50-readPercentage)
+7.317385 * sequentialAccess

(a) Read Requests

23.28173
-16.80425 * schedulerNOOP

+6.101831e-05 * h(filesetSize-25600)
-0.0002108719 * h(25600-filesetSize)

+0.0004302194 * h(blockSize-20480)
-0.0004592948 * h(20480-blockSize)

-0.06300488 * h(readPercentage-25)
+0.1847696 * h(25-readPercentage)

+9.93321 * sequentialAccess

(b) Write Requests

Table 7.11.: MARS model.

coefficient is smaller than 10−9 for some parameters. This behavior increases the model
size, especially if many levels interaction terms are involved. It is difficult to interpret the
model: Although the coefficients seem to give a hint on the influence of each parameter
this is not true: The influence depends on the range of the parameter. On the one hand a
coefficient of 0.5 seems to produce a small influence if its parameter is the read percentage
(ranges from 0% to 100%). On the other hand if its parameter is the block size (ranges
from 4096 bytes to 32768 bytes), then this coefficient has a huge influence. This leads to
the fact that it is impossible to judge on the influence of a parameter without knowing
the parameter ranges. As explained above, linear models do not support factors. For this
reason additional parameters have to be introduced which hinder interpretability. The
interaction terms are difficult to imagine and to interpret. Nevertheless, as predicting a
value using linear regression models only involves multiplication and a summation this
calculation can be done easily even without a computer.

Table 7.11 and Table 7.12 contain the MARS models which are computed. They roughly
show the same format as the linear models but there exist some differences: First, each
model contains a selected set of terms. Not all terms must be included in the model but
only those which are found valuable enough by the algorithm. Second, the hinge functions
(also see Figure 4.4 for an explanation of the hinges) make the unique MARS ability of
modeling partly linear functions possible. The coefficients here are comparable to those
of the linear model. Like for the linear regression models the coefficients only show their
true meaning when also looking at the parameters ranges. An additional difficulty lies in
the interpretation of the hinge functions: These functions are partly zero and partly larger
than zero. By multiplying them with a negative value they get smaller than zero. The
term h(filesetSize− 25600) does only influence the result if the file set size is bigger than
25 GB. As this areas of influence are overlaid it is difficult to get the overall structure of
the model. This gets even more difficult if interaction terms are involved. To summarize
one can say that MARS models have the same disadvantages as linear regression models
plus the difficult interpretability of the hinge functions.

The M5 models which were created for this thesis are quite large: The write model contains
more than 60 nodes and 34 leaves and the same number of linear regression models. As
a graphical representation of this data is not possible, a smaller model is created for this
section. This model is shrank by increasing the minimum amount of nodes which must
be represented by a leaf. This means that the model depicted in Figure 7.13 is not the
one which was discussed in the sections before. It is displayed here only to show how
interpretable M5 models are. The full models which are generated in this thesis can be
found in the Appendix C for reference purposes.

The M5 models are split into two parts: The regression tree and the linear models. Both
parts are already discussed in separate: The regression tree is similar to the one generated
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10.38197
+0.0002565916 * h(filesetSize-25600)
-0.0001162011 * h(25600-filesetSize)
-0.0002583415 * h(12288-blockSize)

-0.1084117 * h(readPercentage-50)
+0.3249405 * h(50-readPercentage)
+15.95859 * sequentialAccess
-31.27198 * schedulerNOOP*sequentialAccess

-0.0002109689 * h(filesetSize-25600)*sequentialAccess
+0.001110919 * h(blockSize-4096)*sequentialAccess
-0.000854648 * schedulerNOOP*h(blockSize-12288)*sequentialAccess

+0.001082635 * schedulerNOOP*h(12288-blockSize)*sequentialAccess

(a) Read Requests

15.11233
-1.987135 * schedulerNOOP

+8.297615e-05 * h(filesetSize-25600)
-0.0002698644 * h(25600-filesetSize)

+0.0002107494 * h(blockSize-20480)
-0.0002541245 * h(20480-blockSize)

-0.06300488 * h(readPercentage-25)
+0.1847696 * h(25-readPercentage)
+14.11624 * sequentialAccess
-29.62917 * schedulerNOOP*sequentialAccess

+0.0007417753 * h(blockSize-4096)*sequentialAccess
-8.783138e-05 * schedulerNOOP*h(filesetSize-25600)*sequentialAccess

+0.0002359698 * schedulerNOOP*h(25600-filesetSize)*sequentialAccess
-0.0006056707 * schedulerNOOP*h(blockSize-20480)*sequentialAccess

+0.0006628693 * schedulerNOOP*h(20480-blockSize)*sequentialAccess

(b) Write Requests

Table 7.12.: Multidimensional MARS model.
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scheduler

sequentialAccess

NOOP

sequentialAccess

CFQ

filesetSize

false

blockSize

true

LM 1

<=38400

LM 2

>38400

LM 3

<=14336

readPercentage

>14336

LM 4

<=45

LM 5

>45

filesetSize

false

blockSize

true

LM 6

<=38400

LM 7

>38400

LM 8

<=14336

filesetSize

>14336

LM 9

<=38400

LM 10

>38400

(a) Regression Tree

Model Scheduler File Set Size Block Size Read Percentage Seq. Access Intercept

LM1 0.5508 0.0001 0.0002 0.1419 -0.3874 11.3216
LM2 0.5508 0.0002 -0.3145 -0.3874 21.9393
LM3 0.5508 0.0003 -0.0396 -0.3874 4.2814
LM4 0.5508 0.0003 -0.0296 -0.3874 4.0199
LM5 0.5508 0.0002 -0.0456 -0.3874 5.1961
LM6 0.5508 0.0001 0.0002 -0.1443 1.6657 12.0265
LM7 0.5508 0.0003 -0.3317 1.6657 21.4784
LM8 0.5508 0.0001 0.0013 -0.0319 1.6657 17.0547
LM9 0.5508 0.0002 0.0003 -0.2256 1.6657 42.8926
LM10 0.5508 0.0011 -0.043 1.6657 23.4465

(b) Linear Models

Figure 7.13.: M5 Model: The model depicted here is not the actual model which was
created in the thesis. The real model has more than four times the size of
this smaller model which does not show all branches of the original model.
This model is depicted to show how interpretable the results are.

91



92 7. Performance Modeling

Criterion Linear Regression CART MARS M5

Generalization Ability FFF F FF FFFF
Model Generation Time FFFF FFF FF F
Prediction Time FFFF FFFF FF F
Interpretability FF FFFF F F
Simplicity of Algorithm FFFF FF FF F

Table 7.13.: Strengths and weaknesses of the different regression techniques and models.
The comparison is done using a relative rating of one to four stars. The
rating does only provide a relative ranking and does not account other existing
modeling techniques. The ”Simplicity of Algorithm” should be seen as the
opposite of the complexity of the algorithm.

by the CART algorithm and the linear models are identical to linear regression models
without interactions. The interpretation of the tree can be done easily as it shows the
important decisions. The linear models are more difficult to interpret. It is easy to judge
what has an influence by looking at the tree but quantifying and guessing the results
involves the interpretation of the linear models which is difficult. The interpretability
depends how much information is needed: If the regression tree provides enough infor-
mation, it is easy. The interpretation gets more difficult if the linear models have to be
analyzed. An additional point is the huge size of the M5 models: As explained above,
the original model has 34 leaves and 34 linear models which make interpretation difficult
simply because of the size.

The last metric used to compare the model is the complexity of the algorithms and their
implementation. The main focus lies on the complexity of the algorithms as the imple-
mentation can be changed easily. Additionally, the implementations used for this thesis
also include functionality which extends the original algorithms. All three algorithms are
already explained in detail in Section 4.3.

The linear regression model algorithm using least square regression is a very simple al-
gorithm. It can be transformed into simple matrix operations like multiplication and
inversion of the input values. It only consists of a single step which makes the algorithm
easy to understand and heavily reduces the complexity. Also the run time of the algorithm
is constant for a given number of input samples and parameters.

The CART, MARS and M5 algorithms work in two steps: They first create a potentially
overfitted model and then reduce its complexity. Both steps are aborted if a special
condition is met. This makes the run time of the algorithm dependent on the actual data.
Additionally the separation in two steps increases the complexity and also the runtime.
The stop conditions for both runs must be chosen wisely, otherwise either a too small or
an overfitted model results from the model generation. The M5 algorithm computes a
lot of intermediate data which is later removed from the models: This includes the linear
models which are computed for all nodes but are only used for the leaves. This creation
and removal introduces another level of complexity in the algorithm. It should be kept in
mind that much more complex algorithms exists for model generation. The CART and
MARS algorithms were chosen because of their simple nature. This means that these
considerations can only be seen relatively.

Table 7.13 contains a summary of the points discussed before. The table must not seen
as an absolute assessment of the criteria but instead as a relative comparison of only
these four regression techniques. Additionally, the generalization abilities and therefore
the model quality is included in this comparison as it was discussed in the section before
and must be included in the algorithm decisions.
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Model degree nk threshold nprune

mars multi 5 20 0.001 20
mars var1 5 40 0.001 40
mars var2 5 20 0.0001 20
mars var3 5 40 0.0001 40

Table 7.14.: Different values for the MARS regression technique configuration parameters.
The first column shows the name of the configuration.

The next section examines if the modeling techniques can perform better if they are
differently configured.

7.2.3. Which configuration parameters of the regression techniques can
improve the prediction results?

Both, the MARS and the CART algorithm can be configured using special parameters. The
question, if setting these values to values other than their defaults improves the prediction
results, is discussed here. The linear regression models are not discussed here as they do
not feature any configuration options. Similar, the M5 model is not configurable in its
currently used implementation and can therefore not be included in these discussions.

Section 4.3 already explained which configuration parameters exist and what these param-
eters control. For MARS, the degree parameter was already varied. As the ANOVA has
shown, a bigger value increases the quality of the model heavily. For this reason the degree
parameter is set fixed to a value of five. This does not mean that the MARS model is of
degree five but only that the MARS algorithm can select to include interaction terms of up
to five parameters. The maximum number of terms in the forward step (abbreviated nk)
has a default value of 20. More nodes in the result of the forward step mean potentially
more nodes after the pruning step. For this reason increasing the parameter increases the
possibility of the model to adapt to details and smaller influences. Therefore the effects
of setting this parameter to 40 is analyzed. This setting results in a model of potentially
double the size of the original model. The threshold for the forward step is the second
stopping condition for the forward step. Its default value is 0.001, which means that the
forward step is stopped if the model has not improved by at least the threshold. Lowering
this value lets the forward step include more terms in its output. For this reason a lower
value of 0.0001 is tested. The number of terms in the pruned model (abbreviated nprune)
are not limited by default, so their value is set to the same value as nk. This condition is
left unchanged as setting this value higher does not make sense and setting it lower would
hinder the ability to adapt to details.

This considerations lead to the four configurations defined in Table 7.14. The first regres-
sion technique configuration is the default configuration which has already been analyzed
in the previous sections. It is included here for comparison reasons. The models are
referenced later using the names shown in the first column of the table.

These four MARS configurations are applied to the original sample set which is used for
the nine models discussed before. The whole process of splitting the training data in
training and test sets and the metric calculation was left unchanged.

Figure 7.14 contains the RMSE and MAPE values for the four models above together
with the best linear regression model and the M5 model for comparison. The figure states
clearly that changing the threshold parameter does not improve the models significantly.
In fact the parameter changes nothing on the read model and improves very little on the
write model. In contrast to that, the increase in the nk and nprune parameter improved
the model heavily. This improvement makes the models even better than the best linear
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Figure 7.14.: Comparison of the quality of model constructed using different values for the
configuration parameters of the MARS algorithm.
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Model minsplit cp

cart 20 0.01
cart var1 5 0.01
cart var2 20 0.001
cart var3 5 0.001

Table 7.15.: Different values for the CART regression technique configuration parameters.
The first column shows the name of the configuration.

model. This is true for both, read and write models. With less than half the original value
considering RMSE and only one third of the original value for MAPE, the improvements
are obvious. The default value of only 20 terms seems to be not enough to model the
complex behaviors of the storage system. A downside of the increase in the number of
terms is the time needed for the construction of the model. This time is nearly doubled
and also the time needed for the predictions is slightly increased.

For CART, there exist two configuration parameters: The minimum numbers of observa-
tions to try a split (abbreviated minsplit) which has a default value of 20. Decreasing
this value allows the algorithm to introduce more terms if needed. The second parameter
is the complexity parameter (abbreviated cp). It is similar to the threshold parameter of
MARS: A split of a node is not tried, if it does not improve the model by at least the
value of the complexity parameter. The lower the value of this parameter, the more nodes
are generated in the forward step. The default value for cp is 0.01. The pruning step of
CART is fully automated and cannot be configured.

Based on these assumptions the four configurations depicted in Table 7.15 are defined. As
above the first configuration contains only the default values and is already discussed in
the previous sections.

To compare these results the same procedure as above is repeated and results in the metrics
depicted in Figure 7.15.

For this configuration, the minsplit parameter provides only very little improvement. In
contrast to that, the raising of the cp parameter has a huge influence on the quality of
the model. The improvement is not as large as with the nk parameter of MARS but still
visible. Changing the cp parameter improves the CART model to the same level as a
multidimensional MARS model using the default configuration. It is interesting to see
that the threshold parameter did not influence the MARS model generation much but
plays an important role for CART. This might result from the fact, that the threshold
parameter is set one magnitude smaller as default for the MARS which might be sufficient.
Another thing to notice is the fact that the creation time of the models does improve if
the complexity parameter is set lower. In fact the time needed for the model construction
is only half of the time needed for constructing the original model. It is not clear why
this is the case as the pruning step of the CART algorithm has to prune the bigger model
which should increase the time needed.

To summarize this question one can say that the choice of the configuration parameters of
the regression techniques has a huge influence on the quality of the models. The default
parameters have not always proven to be the best choice in this case of modeling storage
performance using the system and the data collected for this thesis. Nevertheless it is not
possible to define a generic good choice for the parameters. For example the quality of the
models decreases if the values are set not strict enough: If increasing the nk parameter
of the MARS model further, the models first gets better but at some point it starts to
get worse again. This point is dependent on the data which is modeled. Therefore the
parameters always have to be adapted to the needs. As the influence of the parameters
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Figure 7.15.: Comparison of the four different configurations for the CART algorithm. The
unmodified CART model and the best linear regression model are included
for comparison reasons.
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depends on the data set, this is often not possible. If this adaption is not possible, the
researcher must rely on the default values which were wisely chosen by the algorithm
authors. Additionally, the finding of good parameters is time consuming. Furthermore,
the experiments above show, that the models get better if their size is increased. An
increase in the size also means more storage for the model and more time to create the
models and predict new values. For example, the CART model cart var3 has thrice the
size of the original CART model.
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8. Conclusion

This chapter contains a summary of this thesis and and an outlook on future work.

8.1. Summary

This thesis presented an approach to the systematic analysis of storage performance. The
approach was carried out by using separate research question defined in a Goal/Question/-
Metric plan (compare Section 5.3). The analysis presented here is based on the systematic
measurements which were carried out on an IBM System z and an IBM DS8700 storage
controller.

The systematic gathering of the benchmark results is a time consuming job. It could be
shown by comparing the separate results that a long enough benchmarking time for each
experiment is advantageous. Due to the complex nature of the system and the amount
of caching and logic involved, it is difficult to obtain stable results within a reasonable
amount of time.

The results from the benchmarking were used to analyze the influence of different param-
eters on the storage performance. This was done using an analysis of variances (ANOVA)
which lead to the conclusion that all five examined parameters have an influence on the
variation of the storage performance. When analyzing the interactions between these pa-
rameters it also became clear that these interaction terms play an important role. This
means that the parameters cannot be regarded alone but the interactions must be included
in the examinations.

It was checked, if the benchmarking process at application layer can be extended to mul-
tiple virtualized machines. This involved the parallel execution of the benchmarks on two
virtual machines and comparing the results to a single virtual machine run. The results
were ambiguous: For pure workloads, where only read or write requests are issued, the
measurements were comparable with a low error. When comparing the mixed workloads,
the error increases heavily, that is, that the results of a benchmark of a single virtual
machine cannot be simply translated to a multiple virtual machine scenario.

The results from the systematic benchmarking and the insights gained from the previ-
ous sections, especially from the analysis of parameters, was used to generate regression
models. Nine regression models generated using four different techniques were focused:
Linear regression, CART, MARS and M5. The nine models were trained using the sys-
tematic measurements and then tested to check their quality and generalization abilities.
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The generalization abilities were divided into the interpolation abilities, the prediction of
new samples from within the benchmarked ranges, and the extrapolation abilities, which
includes samples from out of the benchmark range.

Interpolation using the storage performance prediction model works very well: The M5
algorithm shows to be the best performing algorithm with an error from as low as 4.24%
(medium absolute percentage error) up to 10.39%, which still can be regarded a good
result. The linear regression models also provided good results, despite their simple al-
gorithm: Their absolute error can be as low as 9.19%. When increasing the complexity
by building separate models for each scheduler and each access mode, the quality of the
models increases significantly: The MARS algorithm can be used to generate models with
an absolute error of 3.86%.

When looking at the extrapolation abilities of the regression models, the results are not
that good: The models do not perform very well when used to predict values out of their
training set ranges. The validation showed an error twice as high as for most of the
models. Still, the linear regression models and the M5 algorithm performed best but yield
to a relative error of more than 20%. This leads to the conclusion that, to prevent this
high errors, more samples must be included in the modeling process to increase the range
of the modeling.

The second part of the regression analysis involved the evaluation of the regression tech-
niques: The models were compared with respect to their prediction quality, the time needed
for the creation of the models and the prediction, the interpretability and the complexity
of the algorithms. The M5 algorithm has shown an impressive quality for the predictions
but has a slow model generation and prediction and is difficult to interpret. The linear
regression can generate models very fast and is easier to interpret while still maintaining
a good generalization ability. CART and MARS range in the midfield.

To extend the modeling discussion, the configuration parameters of the MARS and CART
algorithms were analyzed. These parameters were left at their default values for the pre-
vious analyses. Their variation can improve the interpolation abilities of the models by up
to 50%. The problem with these parameter changes is that the effects are not foreseeable:
They are dependent on the actual benchmarked data and cannot be generalized. Addi-
tionally, the parameter changes which improve the quality of the models also increase the
models size and the generation time.

To summarize the thesis: The generation of storage performance prediction models using
regression techniques works well. These techniques provide a simple, yet versatile approach
to the problem of predicting storage performance. When being provided with enough
samples for the training process, the results can be improved further. The comparison
between the regression techniques showed no absolute winner, therefore the trade offs
between the techniques must be considered to find a good fit.

8.2. Future Work

Some topics, which could be a valuable contribution to the research community, were
intentionally left out of scope in this thesis:

This thesis was limited to four regression techniques: Linear regression using least square,
MARS, CART and M5. As the field of regression analysis is under constant improvement,
it is highly possible that there are other techniques which provide better results. Their
characteristics would have to be analyzed in details to see if these techniques are a good
fit for storage performance modeling. In his master thesis, Faber [Fab11] has extensively
discussed the advantages of genetic programming. These could fit well especially for more
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complex models and scenarios. Another technology which could be used are artificial
neural network models as used by Kundu et al. [KRDZ10]. Furthermore there exists a
number of regression tree algorithms similar to CART and M5. The integration of new
regression techniques in the existing Analysis Library developed in this thesis can easily
be done if the algorithms are implemented in R.

Benchmarking additional parameter configurations could produce better results and pro-
vide a better insight to both, storage performance modeling and the storage system struc-
ture: The thesis limited the operations to read and write. Other operations, which modify
the file system were not considered. The effect of the system load which includes the thread
count has not been included in the considerations. Operating system caches were not in-
cluded in the models. Some parameters were coupled and could be decoupled: The read
and write block size could be benchmarked separately and the combination of sequential
reads and random writes (and vice–versa) could be evaluated.

Although this thesis used a heavily virtualized system for the benchmarking, many ques-
tions remain open in this context: A goal could be to include multiple virtual machines and
their configuration in the modeling. This would mean to include one workload parameter
set for each virtual machine involved. The predictions could include the run response time
of the requests of each of the machines separately. Because this would heavily increase
the benchmark work, an approach similar to the one proposed by Westermann et al. and
Kundu et al. [WHKF12, KRDZ10] is helpful: They proposed an iterative approach where
the models are refined as needed. This reduces the time required for the benchmarking.

Mi et al. [MCCS08] show a way to include burstiness in regression models. This approach
could increase the quality of the models and reduce the benchmarking time required to
create accurate models.
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Appendix

A. ANOVA Including All Interaction Terms

In Section 6.2, an ANOVA is conducted using no interactions and another ANOVA is
executed using interactions of two parameters. The following Table A.1 and Table A.2
present ANOVAs containing all interaction terms possible. The tables are left out of
Section 6.2 due their length and their missing additional value for the interpretation.
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106 Appendix

B. Comparison of All Models

This section contains four figures: Figure B.1 and Figure B.2 contain the ten–fold cross–
validation of all models which were evaluated in this thesis. Each of the box plots contains
the results of one of the ten folds. For the interpretation of the plots see the appropriate
chapters. The next two figures contain the comparison of the duration of model creation
(Figure B.3) and sample prediction (Figure B.4) for all models which were evaluated in
this thesis. The underlying data can be found in two tables: The results from the cross–
validation in Table B.3 and the timing results in Table B.4.
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Figure B.1.: Comparison of all 15 models which were generated in this thesis using RMSE
when using 10–fold cross–validation to test the interpretation abilities.
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Figure B.2.: Comparison of the interpretation abilities of all 15 models when using 10–fold
cross–validation and using MAPE as metric.
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Read Model Write Model
Model RMSE MAPE RMSE MAPE

(ms) (%) (ms) (%)

lm 11.51 87.02 8.77 66.32
lm 2param inter 4.80 31.40 3.26 18.12
lm 3param inter 3.13 16.72 2.62 10.35
lm 4param inter 2.95 13.43 2.56 9.26
lm 5param inter 2.96 13.47 2.56 9.19
cart 6.16 38.40 5.20 38.11
cart var1 6.16 38.40 5.20 38.11
cart var2 3.79 21.25 2.78 17.68
cart var3 3.78 21.26 2.57 17.13
mars 11.54 86.36 8.75 66.84
mars multi 4.86 34.34 2.86 16.00
mars var1 2.20 12.59 1.53 9.00
mars var2 4.86 34.34 2.86 16.00
mars var3 2.19 12.58 1.45 8.05
m5 1.69 6.49 0.81 4.24

Table B.3.: Comparison of the interpolation and generalization abilities of all 15 models,
benchmarked using 10–fold cross–validation.

Modeling Prediction
Model Read Write Read Write

(s) (s) (s) (s)

lm 0.00500 0.00500 0.00167 0.00115
lm 2param inter 0.00800 0.00800 0.00135 0.00135
lm 3param inter 0.01200 0.01200 0.00167 0.00156
lm 4param inter 0.01400 0.01500 0.00188 0.00167
lm 5param inter 0.01500 0.01400 0.00177 0.00177
cart 0.02500 0.02500 0.00115 0.00104
cart var1 0.02500 0.02500 0.00115 0.00104
cart var2 0.02600 0.02600 0.00125 0.00125
cart var3 0.02700 0.02600 0.00125 0.00115
mars 0.04400 0.04400 0.02083 0.02042
mars multi 0.05800 0.05600 0.02125 0.02146
mars var1 0.11100 0.10500 0.02542 0.02385
mars var2 0.05700 0.05500 0.02198 0.02177
mars var3 0.11100 0.10600 0.02521 0.02396
m5 0.14600 0.18100 0.05052 0.05156

Table B.4.: Comparison of the time needed for the model creation (”Modeling”) and for
the prediction of 1000 samples (”Prediction”). The time needed for both, the
read and the write models are depicted for each of the 15 models.
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Figure B.3.: Comparison of all 15 models which were generated in this thesis. Compared
by time needed for model generation.
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Figure B.4.: Comparison of all 15 models which were generated in this thesis. Compared
by time needed for prediction of 1000 samples.
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C. M5 Model

The following two texts are a textual representation of the M5 models which were created
in this thesis. As explained, the model is so large that a graphical representation was not
possible anymore:

C.1. Read Model

Rule 1: [60 cases, mean 4.071682, range 2.186175 to 5.945354, est err 0.208076]

if

schedulerNOOP > 0

blockSize <= 16384

readPercentage > 50

sequentialAccess > 0

then

outcome = 2.249239 + 0.00023 blockSize - 0.007 readPercentage

Rule 2: [60 cases, mean 5.400255, range 2.999963 to 10.08509, est err 0.377734]

if

schedulerNOOP > 0

blockSize <= 16384

readPercentage <= 50

sequentialAccess > 0

then

outcome = 4.230993 + 0.00031 blockSize - 0.054 readPercentage

Rule 3: [64 cases, mean 5.753605, range 2.18695 to 8.427136, est err 0.301927]

if

filesetSize <= 25600

readPercentage > 60

sequentialAccess <= 0

then

outcome = 2.237216 + 0.00018 blockSize + 1.7e-05 filesetSize

Rule 4: [32 cases, mean 5.779727, range 2.18695 to 8.427136, est err 0.302356]

if

schedulerNOOP > 0

filesetSize <= 25600

readPercentage > 60

sequentialAccess <= 0

then

outcome = 3.186848 + 0.00019 blockSize + 1.3e-05 filesetSize

- 0.012 readPercentage

Rule 5: [60 cases, mean 7.529825, range 6.058173 to 9.877037, est err 0.304938]

if

schedulerNOOP > 0

blockSize > 16384

readPercentage > 50

sequentialAccess > 0

then

outcome = 3.93149 + 0.00019 blockSize - 0.018 readPercentage

Rule 6: [48 cases, mean 8.935019, range 3.280741 to 18.30055, est err 0.896683]

if

schedulerNOOP > 0

filesetSize <= 1024

readPercentage <= 50

then

outcome = 10.177727 - 0.221 readPercentage + 0.00038 blockSize

Rule 7: [64 cases, mean 8.977553, range 2.955563 to 19.05015, est err 1.456868]

if

filesetSize <= 25600

blockSize <= 16384

readPercentage <= 60

sequentialAccess <= 0

then

outcome = 12.25084 + 0.00028 filesetSize - 0.205 readPercentage

+ 0.00023 blockSize

Rule 8: [48 cases, mean 10.208871, range 7.007518 to 14.74364, est err 0.254249]

if

schedulerNOOP > 0

filesetSize > 1024

blockSize > 16384

readPercentage <= 50

sequentialAccess > 0

then

outcome = 5.841694 + 0.0003 blockSize - 0.113 readPercentage

+ 1.1e-05 filesetSize

Rule 9: [64 cases, mean 10.753127, range 2.955563 to 21.09304, est err 1.289743]

if

schedulerNOOP > 0

filesetSize <= 25600
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readPercentage <= 60

sequentialAccess <= 0

then

outcome = 13.712694 + 0.000201 filesetSize - 0.21 readPercentage

+ 0.00026 blockSize - 1.1 schedulerNOOP + 0.5 sequentialAccess

Rule 10: [64 cases, mean 12.357505, range 6.706121 to 21.09304, est err 1.123855]

if

filesetSize <= 25600

blockSize > 16384

readPercentage <= 60

sequentialAccess <= 0

then

outcome = 16.076314 - 0.228 readPercentage + 7e-05 filesetSize

+ 0.00018 blockSize

Rule 11: [48 cases, mean 14.328711, range 3.179194 to 25.22037, est err 1.084740]

if

schedulerNOOP <= 0

filesetSize > 25600

readPercentage > 60

sequentialAccess <= 0

then

outcome = 9.696136 + 0.000243 filesetSize - 0.17 readPercentage

+ 1.5 sequentialAccess + 3e-05 blockSize

Rule 12: [72 cases, mean 16.094955, range 3.612804 to 27.41615, est err 0.846966]

if

schedulerNOOP > 0

filesetSize > 25600

readPercentage > 50

sequentialAccess <= 0

then

outcome = 10.785956 + 0.000241 filesetSize - 0.192 readPercentage

+ 0.0001 blockSize

Rule 13: [48 cases, mean 21.867498, range 12.13931 to 32.26341, est err 0.971340]

if

schedulerNOOP <= 0

filesetSize > 25600

readPercentage > 40

readPercentage <= 60

sequentialAccess <= 0

then

outcome = 24.912634 + 0.000252 filesetSize - 0.366 readPercentage

- 0.00011 blockSize

Rule 14: [12 cases, mean 23.787912, range 17.12643 to 31.60984, est err 0.617917]

if

schedulerNOOP <= 0

filesetSize <= 1024

blockSize <= 16384

readPercentage > 50

sequentialAccess > 0

then

outcome = 30.941452 + 0.00059 blockSize - 0.17 readPercentage

Rule 15: [12 cases, mean 29.849649, range 22.44754 to 37.83307, est err 0.735931]

if

schedulerNOOP <= 0

filesetSize > 1024

filesetSize <= 25600

blockSize <= 16384

readPercentage > 50

sequentialAccess > 0

then

outcome = 22.853144 + 0.00107 blockSize - 0.053 readPercentage

Rule 16: [72 cases, mean 30.332626, range 16.81138 to 48.10731, est err 1.382687]

if

schedulerNOOP > 0

filesetSize > 25600

readPercentage <= 50

sequentialAccess <= 0

then

outcome = 30.264563 - 0.574 readPercentage + 0.000267 filesetSize

+ 0.0001 blockSize

Rule 17: [24 cases, mean 31.847515, range 19.93114 to 47.4202, est err 1.327085]

if

schedulerNOOP <= 0

filesetSize > 25600

blockSize > 16384

readPercentage <= 40

sequentialAccess <= 0

then

outcome = 31.772987 - 0.675 readPercentage + 0.000287 filesetSize

Rule 18: [12 cases, mean 32.867348, range 24.33015 to 42.49104, est err 0.596964]

if

schedulerNOOP <= 0
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filesetSize > 1024

filesetSize <= 25600

blockSize <= 16384

readPercentage <= 50

sequentialAccess > 0

then

outcome = 20.875949 + 0.00135 blockSize - 0.047 readPercentage

Rule 19: [36 cases, mean 34.725925, range 23.49752 to 45.69067, est err 0.688417]

if

schedulerNOOP <= 0

filesetSize > 25600

blockSize <= 16384

readPercentage > 50

sequentialAccess > 0

then

outcome = 19.700927 + 0.00153 blockSize + 3e-05 filesetSize

- 0.04 readPercentage

Rule 20: [36 cases, mean 36.340027, range 25.49491 to 49.33521, est err 0.926318]

if

schedulerNOOP <= 0

filesetSize > 25600

blockSize <= 16384

readPercentage <= 50

sequentialAccess > 0

then

outcome = 21.875018 + 0.00164 blockSize - 0.059 readPercentage

Rule 21: [24 cases, mean 37.363880, range 23.32743 to 59.78062, est err 2.429394]

if

schedulerNOOP <= 0

filesetSize > 25600

blockSize <= 16384

readPercentage <= 40

sequentialAccess <= 0

then

outcome = 34.805767 - 0.799 readPercentage + 0.000368 filesetSize

+ 0.5 sequentialAccess

Rule 22: [32 cases, mean 40.512684, range 24.93643 to 55.38382, est err 1.342345]

if

schedulerNOOP <= 0

filesetSize <= 25600

blockSize > 16384

readPercentage > 40

sequentialAccess > 0

then

outcome = 31.667796 + 0.000466 filesetSize + 0.00068 blockSize

- 0.215 readPercentage

Rule 23: [24 cases, mean 42.319393, range 25.67785 to 64.67324, est err 1.812921]

if

schedulerNOOP <= 0

filesetSize <= 1024

readPercentage <= 50

sequentialAccess > 0

then

outcome = 45.691879 - 0.506 readPercentage + 0.00089 blockSize

Rule 24: [16 cases, mean 52.540298, range 42.65955 to 64.67324, est err 3.034891]

if

schedulerNOOP <= 0

filesetSize <= 25600

blockSize > 16384

readPercentage <= 40

sequentialAccess > 0

then

outcome = 43.369215 - 0.462 readPercentage + 0.00092 blockSize

Rule 25: [32 cases, mean 57.396091, range 40.46554 to 68.46743, est err 1.882137]

if

schedulerNOOP <= 0

filesetSize > 25600

filesetSize <= 76800

blockSize > 16384

readPercentage > 40

sequentialAccess > 0

then

outcome = 26.061333 + 0.00121 blockSize + 8.8e-05 filesetSize

- 0.088 readPercentage

Rule 26: [24 cases, mean 58.428070, range 48.25661 to 67.93386, est err 1.221291]

if

schedulerNOOP <= 0

filesetSize > 76800

blockSize > 16384

sequentialAccess > 0

then

outcome = 26.41159 + 0.00125 blockSize - 0.033 readPercentage

Rule 27: [24 cases, mean 59.011002, range 42.1826 to 70.36684, est err 4.958269]
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if

schedulerNOOP <= 0

filesetSize > 25600

blockSize > 16384

readPercentage <= 40

sequentialAccess > 0

then

outcome = 44.936104 + 0.00105 blockSize - 0.394 readPercentage

C.2. Write Model

Rule 1: [36 cases, mean 4.545806, range 2.766769 to 8.540091, est err 0.459925]

if

filesetSize <= 1024

blockSize <= 12288

sequentialAccess <= 0

then

outcome = 3.211877 + 0.00036 blockSize + 2.8 sequentialAccess

- 0.039 readPercentage + 1.4e-05 filesetSize

Rule 2: [20 cases, mean 4.999155, range 2.766769 to 8.169867, est err 0.246163]

if

schedulerNOOP > 0

filesetSize <= 1024

blockSize <= 20480

readPercentage > 25

sequentialAccess <= 0

then

outcome = 4.361609 + 0.00026 blockSize - 0.036 readPercentage

- 0.6 schedulerNOOP + 0.4 sequentialAccess

Rule 3: [25 cases, mean 5.259614, range 2.768775 to 9.476368, est err 0.343393]

if

schedulerNOOP > 0

filesetSize <= 1024

blockSize <= 20480

readPercentage > 0

sequentialAccess > 0

then

outcome = 4.562247 + 0.00027 blockSize - 0.044 readPercentage

- 0.5 sequentialAccess + 6e-06 filesetSize

Rule 4: [80 cases, mean 5.514467, range 2.941291 to 9.416635, est err 0.273063]

if

schedulerNOOP > 0

filesetSize > 1024

blockSize <= 20480

readPercentage > 25

sequentialAccess > 0

then

outcome = 4.631451 + 0.00028 blockSize - 0.046 readPercentage

Rule 5: [32 cases, mean 6.871717, range 2.850726 to 12.34166, est err 0.352914]

if

schedulerNOOP <= 0

filesetSize <= 1024

readPercentage > 25

sequentialAccess <= 0

then

outcome = 4.30897 + 0.00028 blockSize - 0.048 readPercentage

Rule 6: [64 cases, mean 9.173804, range 3.365226 to 14.7646, est err 0.505325]

if

schedulerNOOP > 0

filesetSize > 1024

filesetSize <= 51200

readPercentage > 25

sequentialAccess <= 0

then

outcome = 11.029722 - 0.145 readPercentage + 9.5e-05 filesetSize

+ 0.00014 blockSize

Rule 7: [40 cases, mean 9.483462, range 3.416123 to 15.79906, est err 0.328182]

if

schedulerNOOP > 0

readPercentage > 0

readPercentage <= 25

sequentialAccess > 0

then

outcome = 2.116236 + 0.00041 blockSize

Rule 8: [30 cases, mean 9.870280, range 6.767488 to 14.19027, est err 0.274691]

if

schedulerNOOP > 0

filesetSize <= 1024

blockSize > 20480

readPercentage > 0

then
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outcome = 6.428383 + 0.00029 blockSize - 0.099 readPercentage

Rule 9: [15 cases, mean 9.932889, range 3.439524 to 14.48971, est err 1.250289]

if

schedulerNOOP > 0

filesetSize <= 51200

blockSize <= 20480

readPercentage > 0

readPercentage <= 25

sequentialAccess <= 0

then

outcome = 2.430456 + 0.000111 filesetSize + 0.00034 blockSize

Rule 10: [30 cases, mean 10.671844, range 6.97946 to 15.72283, est err 0.353073]

if

schedulerNOOP > 0

filesetSize > 51200

blockSize > 20480

readPercentage > 0

sequentialAccess > 0

then

outcome = 7.748855 - 0.121 readPercentage + 0.00031 blockSize

Rule 11: [30 cases, mean 11.151483, range 7.348397 to 15.79906, est err 0.237698]

if

schedulerNOOP > 0

filesetSize > 1024

filesetSize <= 51200

blockSize > 20480

readPercentage > 0

sequentialAccess > 0

then

outcome = 7.724286 + 0.00033 blockSize - 0.113 readPercentage

- 1e-05 filesetSize

Rule 12: [40 cases, mean 11.656739, range 4.239166 to 19.18966, est err 0.048223]

if

schedulerNOOP > 0

readPercentage <= 0

sequentialAccess > 0

then

outcome = 2.085253 + 0.00052 blockSize

Rule 13: [30 cases, mean 11.675081, range 7.331079 to 16.95288, est err 0.686488]

if

schedulerNOOP > 0

filesetSize > 1024

filesetSize <= 51200

blockSize > 20480

readPercentage > 0

sequentialAccess <= 0

then

outcome = 13.046082 - 0.153 readPercentage + 0.00017 blockSize

+ 3.5e-05 filesetSize

Rule 14: [20 cases, mean 11.877479, range 3.490562 to 19.67571, est err 0.617486]

if

schedulerNOOP <= 0

filesetSize > 1024

blockSize <= 4096

readPercentage > 0

sequentialAccess <= 0

then

outcome = 10.516692 + 0.000131 filesetSize - 0.138 readPercentage

Rule 15: [70 cases, mean 12.212640, range 4.426095 to 18.57304, est err 0.842507]

if

schedulerNOOP <= 0

filesetSize > 1024

filesetSize <= 51200

blockSize > 4096

readPercentage > 0

sequentialAccess <= 0

then

outcome = 9.394175 - 0.111 readPercentage + 7.3e-05 filesetSize

+ 0.00025 blockSize

Rule 16: [20 cases, mean 12.908865, range 7.759267 to 19.10088, est err 0.443105]

if

filesetSize <= 1024

blockSize > 12288

readPercentage <= 25

sequentialAccess <= 0

then

outcome = 3.54713 + 0.00046 blockSize - 0.155 readPercentage

Rule 17: [16 cases, mean 13.591073, range 9.359589 to 18.57304, est err 0.475694]

if

schedulerNOOP <= 0

filesetSize > 1024

filesetSize <= 25600
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blockSize > 16384

readPercentage > 0

readPercentage <= 60

sequentialAccess <= 0

then

outcome = 14.458815 - 0.164 readPercentage + 0.00024 blockSize

Rule 18: [50 cases, mean 15.032749, range 9.201373 to 19.66216, est err 0.588060]

if

schedulerNOOP > 0

filesetSize > 51200

blockSize <= 20480

readPercentage > 0

sequentialAccess <= 0

then

outcome = 6.850477 + 0.000124 filesetSize - 0.09 readPercentage

+ 0.00013 blockSize

Rule 19: [30 cases, mean 15.482719, range 10.70855 to 19.24647, est err 1.006962]

if

schedulerNOOP <= 0

filesetSize > 51200

blockSize > 4096

blockSize <= 16384

readPercentage > 0

sequentialAccess <= 0

then

outcome = 3.362062 + 0.00011 filesetSize + 0.0003 blockSize

- 0.025 readPercentage + 0.4 sequentialAccess

Rule 20: [16 cases, mean 15.962940, range 4.239478 to 24.78856, est err 1.095467]

if

schedulerNOOP > 0

filesetSize <= 25600

readPercentage <= 0

sequentialAccess <= 0

then

outcome = 3.200554 + 0.000356 filesetSize + 0.00044 blockSize

Rule 21: [30 cases, mean 16.594831, range 11.45163 to 21.21955, est err 0.532943]

if

schedulerNOOP > 0

filesetSize > 51200

blockSize > 20480

readPercentage > 0

sequentialAccess <= 0

then

outcome = 8.014792 + 0.000111 filesetSize - 0.114 readPercentage

+ 0.00015 blockSize

Rule 22: [16 cases, mean 17.517969, range 7.89865 to 27.85923, est err 1.854476]

if

schedulerNOOP <= 0

filesetSize > 1024

blockSize > 16384

readPercentage > 60

sequentialAccess <= 0

then

outcome = -0.776021 + 0.000225 filesetSize + 0.00017 blockSize

Rule 23: [48 cases, mean 19.517345, range 13.3347 to 25.47197, est err 0.891073]

if

schedulerNOOP <= 0

filesetSize > 25600

blockSize > 16384

readPercentage > 0

readPercentage <= 60

sequentialAccess <= 0

then

outcome = 3.948327 + 0.000112 filesetSize + 0.0002 blockSize

+ 0.044 readPercentage

Rule 24: [12 cases, mean 19.705690, range 13.3347 to 25.47197, est err 0.738299]

if

schedulerNOOP <= 0

filesetSize > 25600

blockSize > 16384

readPercentage > 50

readPercentage <= 60

sequentialAccess <= 0

then

outcome = 0.312542 + 0.000186 filesetSize + 0.0002 blockSize

Rule 25: [15 cases, mean 22.816879, range 16.07982 to 29.79744, est err 1.605232]

if

schedulerNOOP > 0

filesetSize > 25600

blockSize <= 20480

readPercentage <= 0

sequentialAccess <= 0

then

outcome = 10.360359 + 0.00051 blockSize + 7.6e-05 filesetSize
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Rule 26: [24 cases, mean 23.544998, range 16.40182 to 39.31592, est err 2.004764]

if

schedulerNOOP <= 0

filesetSize <= 1024

blockSize <= 16384

sequentialAccess > 0

then

outcome = 23.739252 + 0.00068 blockSize - 0.18 readPercentage

Rule 27: [12 cases, mean 24.850025, range 17.15667 to 35.95248, est err 1.681448]

if

schedulerNOOP <= 0

filesetSize > 1024

blockSize <= 12288

readPercentage <= 0

sequentialAccess <= 0

then

outcome = 13.737529 + 0.000165 filesetSize

Rule 28: [9 cases, mean 25.647768, range 24.49214 to 26.89822, est err 0.450433]

if

schedulerNOOP > 0

filesetSize > 25600

blockSize > 20480

readPercentage <= 0

sequentialAccess <= 0

then

outcome = 17.892457 + 0.00023 blockSize + 1.3e-05 filesetSize

Rule 29: [20 cases, mean 26.282497, range 21.74508 to 28.52684, est err 0.668663]

if

schedulerNOOP <= 0

filesetSize > 1024

blockSize > 12288

readPercentage <= 0

sequentialAccess <= 0

then

outcome = 18.901978 + 5.7e-05 filesetSize + 0.00015 blockSize

Rule 30: [96 cases, mean 33.976761, range 26.17056 to 42.61604, est err 0.456515]

if

schedulerNOOP <= 0

filesetSize > 1024

blockSize <= 16384

sequentialAccess > 0

then

outcome = 20.973984 + 0.00111 blockSize + 2e-05 filesetSize

+ 0.01 readPercentage

Rule 31: [24 cases, mean 34.191681, range 24.95808 to 54.83305, est err 2.677022]

if

schedulerNOOP <= 0

filesetSize <= 1024

blockSize > 16384

sequentialAccess > 0

then

outcome = 28.417545 - 0.278 readPercentage + 0.00062 blockSize

Rule 32: [32 cases, mean 42.822277, range 26.17056 to 60.72971, est err 0.827015]

if

schedulerNOOP <= 0

filesetSize > 1024

readPercentage > 60

sequentialAccess > 0

then

outcome = 19.905033 + 0.00105 blockSize + 6.1e-05 filesetSize

Rule 33: [40 cases, mean 50.671181, range 43.39243 to 58.54386, est err 0.463372]

if

schedulerNOOP <= 0

filesetSize > 1024

filesetSize <= 51200

blockSize > 16384

readPercentage <= 60

sequentialAccess > 0

then

outcome = 21.129888 + 0.00102 blockSize + 6e-05 filesetSize

Rule 34: [48 cases, mean 52.056000, range 44.18821 to 60.72971, est err 0.483730]

if

schedulerNOOP <= 0

filesetSize > 51200

blockSize > 16384

sequentialAccess > 0

then

outcome = 20.948825 + 0.00103 blockSize + 2.6e-05 filesetSize

+ 0.035 readPercentage
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D. Glossary

benchmark is a piece of software which runs on the system under test. It produces load
on the system and captures results of given metrics. 118

benchmark controller uses the benchmark drivers to coordinate the execution of bench-
marks on the systems under test. 39, 118

benchmark driver is the interface between the benchmark controller and the benchmark.
It launches a given benchmark, captures the output and extracts the results from
the output. 39, 41, 118

benchmark harness consists of multiple components which help to plan and control the
execution of benchmarks on multiple hosts, gather the results and store them for
further analysis. 118

benchmark run A single execution of a benchmark on one system under test. 118

dependent variable is a variable, whose values are generated during the run of a bench-
mark. The values are dependent on the values of the independent variables. 5, 24,
118

experiment is a specification of one benchmark run defined by a value for each of the
independent variables needed and a system under test where the benchmark run
should be executed on. 41, 118

experiment series is a term used in singular form for a set of experiments on a system
under test. The experiments are defined by a independent variable space. 42, 118

experiment setup defines the overall experiment configuration. It contains an experiment
series for each system under test which will be involved. 118

independent variable is also called an explanatory variable or input variable. It is a
variable whose values are set prior to the run of a benchmark. It includes all factors
which can possibly change the outcome of a benchmark. 5, 6, 24, 41, 118

independent variable space is a set of independent variables and one or more values for
each of the variables. 42, 118

system under test is the actual host or machine for which the benchmark results should
be generated. 41, 118
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