
Comparison of Distribution Technologies in
Different NoSQL Database Systems

Studienarbeit

Institute of Applied Informatics and Formal Description Methods (AIFB)
Karlsruhe Institute of Technology (KIT)

Dominik Bruhn

Reviewer: Prof. Dr. Tai

2nd Reviewer: Prof. Dr. Studer
Advisor: Markus Klems

21 Feb 2011 - 21 May 2011

Dominik Bruhn
Willy-Andreas-Allee 7
76131 Karlsruhe

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit selbstständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig
angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten
und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Karlsruhe, den 6.8.2011

Dominik Bruhn

2

Contents

1 Introduction 8
1.1 History of Database Systems . 8
1.2 Structure . 9
1.3 Scalability . 9

2 Influential papers 10
2.1 Amazon Dynamo . 10

2.1.1 Design Considerations . 10
2.1.2 System Design . 11
2.1.3 Replication Design . 12
2.1.4 Operation Design . 12
2.1.5 Handling Failures . 13

2.2 Google BigTable . 14
2.2.1 Design Considerations . 14
2.2.2 Existing Components . 15
2.2.3 BigTable Architecture . 16
2.2.4 Handling Failures . 17

3 Implementations 19
3.1 Apache Cassandra . 19

3.1.1 Design Considerations . 19
3.1.2 Data Schema . 20
3.1.3 Typical Use Cases . 20
3.1.4 System Design . 20
3.1.5 Scaling Mechanisms and Consistency 21

3.2 Riak . 23
3.2.1 Data Model . 23
3.2.2 System Design . 24

3.3 Project Voldemort . 24
3.4 HBase . 25

3.4.1 Subcomponents . 25
3.4.2 HBase Architecture . 28
3.4.3 Scaling Mechanisms . 30
3.4.4 Consistency Guarantees . 30

3.5 Redis . 30
3.5.1 Scaling Techniques . 31

3

3.6 CouchDB . 32
3.6.1 Data Model . 33
3.6.2 System Design . 33
3.6.3 Replication . 33
3.6.4 Scaling Mechanisms . 35

3.7 MongoDB . 36
3.7.1 Data Design . 36
3.7.2 System Architecture . 36
3.7.3 User Access . 38
3.7.4 Scaling Mechanisms . 39

3.8 Membase . 39
3.8.1 Data Model . 39
3.8.2 System Architecture . 40
3.8.3 Handling Failures . 41

3.9 Additional systems . 41
3.9.1 PNUTS . 41
3.9.2 Google Megastore . 42

4 Comparison 43
4.1 General Overview . 43
4.2 Ring Systems . 44

4.2.1 Node Types Involved . 44
4.2.2 Implementations . 44
4.2.3 Failure Situation . 44
4.2.4 Consistency Model . 44
4.2.5 Scaling Methods . 45
4.2.6 Data Access . 45

4.3 Master-Slave Systems . 45
4.3.1 Node Types Involved . 45
4.3.2 Implementations . 45
4.3.3 Failure Situation . 46
4.3.4 Consistency Model . 46
4.3.5 Scaling Methods . 46
4.3.6 Data Access . 47

4.4 Replication Based Systems . 47
4.4.1 Node Types Involved . 47
4.4.2 Implementations . 47
4.4.3 Failure Situation . 47
4.4.4 Consistency Model . 47
4.4.5 Scaling Methods . 48
4.4.6 Data Access . 48

4.5 Summary of the Categorization . 48

4

5 Use-Cases 50
5.1 Simplest Setup . 50
5.2 Data Model . 50
5.3 Consistency . 50
5.4 Concurrent Access . 51

6 Summary 52
6.1 Further Work . 52

References 53

5

List of Figures

2.1 Replication scheme in Amazon Dynamo 11
2.2 Placement of replicas in Amazon Dynamo 12
2.3 Architecture of Google BigTable . 17

3.1 Structure of the ZooKeeper service . 26
3.2 Architecture of HDFS . 27
3.3 HBase architecture . 29
3.4 Replication in Redis . 31
3.5 Sharding in Redis . 32
3.6 Bidirectional replication in CouchDB . 34
3.7 Architecture of a distributed MongoDB 37
3.8 Distribution in Membase . 40

4.1 Consistency Models in the categories . 49

6

List of Tables

4.1 Overview of the systems examined . 43
4.2 Categorization and features of the systems 43
4.3 Differences of the categories . 48

5.1 Data model and distribution category . 51

7

1 Introduction

1.1 History of Database Systems

Traditionally, most organizations used relational database management systems (RDMS)
for handling their data [Stonebraker, 2010]. When the amount of data and users got
bigger and bigger scalability and distribution came into focus.
In the 1970’s, it surfaced that it is difficult to distribute a RDMS while retaining all the
features and guarantees [Vogels, 2009]. With the rise of the large Internet systems, with
their huge amount of data and requests, new solutions for the distribution of databases
were needed. This is why within the last years alternative data management systems,
so-called NoSQL DMS (or NoSQL data stores), have been created and are becoming
more and more important. The term NoSQL is short for ”Not Only SQL” and was
introduced in 2009, when it was chosen as the title of a conference ”for folks interested
in distributed structured data storage” [Evans, 2009]. Although at this time, some of the
major players in the NoSQL market already existed (like Apache Cassandra) or were in
internal company use (like Google BigTable), a major boost in development has occurred
since then.

There is currently no consistent definition of NoSQL in literature. Those systems can
differ from classic RDBMS in various ways, whereas not all systems incorporate all of
these specifications:

• The schema is not fixed.

• Join operations are not supported and must be implemented by hand.

• The interface to the database uses a more lower-level language.

• The data stores often do not attempt to provide all ACID guarantees.

• The systems are built to scale horizontally and are optimized for heavy read or
write loads.

• The data is stored in a column- or document-oriented way.

Most of these NoSQL systems support some kind of distribution technology to achieve
scalability, although, the technologies which are incorporated in NoSQL systems vary
widely with respect to the used procedures and algorithms.
The objective of this work is to compare the distribution technologies used by various
NoSQL database stores. Focus is on the analysis, how these technologies can provide
scalability to these systems, their strengths and weaknesses regarding high availability
and low latency demands.

8

1.2 Structure

This thesis is divided into six parts: In chapter 2 ideas from two papers published by
Google and Amazon are introduced and discussed. Later in chapter 3 selected NoSQL
database systems are explained and analyzed in detail. After this, in chapter 4, the
systems explained previously will be compared and categorized using a unique and newly
created categorization scheme. In chapter 5 some typical use cases for the systems will
be discussed and a summary in chapter 6 marks the end of this thesis.

1.3 Scalability

Traditional database systems and the new NoSQL implementations both allow a client
to store and retrieve data. The data which is saved in the database is structured as
objects or rows.
A system is called scalable, if it can handle the addition of load without changing the
fundamentals (e.g. used software or way of access) [Neuman and Neuman, 1994]. An
important tool for building a scalable system is distribution. On a distributed database,
the data is distributed over several machines or nodes. There are three mechanism
which are used in a distributed database system to achieve scalability [cf. Neuman and
Neuman, 1994]:

1. Replication: A replicated database has multiple identical persistent instances of
its objects on many nodes, in particular, to guarantee availability.

2. Fragmentation means the separation of the data into smaller subsets and the dis-
tribution of those subsets onto nodes. This is sometimes also called sharding.

3. Caching: Copies of a object are temporarily saved on another node for faster access
because of the increased locality.

Whenever replication is involved in database systems, attention has to paid to con-
sistency : In a consistent database system, every copy of a object will be up-to-date and
thus be the same, so that the client gets the same result whichever replica it queries. As
it is very difficult to achieve consistency, some systems make lower guarantees: Eventual
consistency means that the system does not guarantee that all replicas contain the most
recent updates, so old data might be present in the system. Nevertheless, the systems
guarantees that at some point in the future the updates will be commited on all nodes.

9

2 Influential papers

2.1 Amazon Dynamo

In 2007 nine Amazon1 engineers published a paper titled Dynamo: Amazon’s Highly
Available Key-value store [DeCandia et al., 2007]. Amazon had, as many other Internet
companies, the problem of a huge growth in data within the last years. This is why they
were searching for a reliable and scalable data store.
Reliability is important because every second the data store is unavailable Amazon keeps
loosing money, because their online store is also not available to customers.
Scalability was an issue because of the aforementioned grow in data and in accesses.
The problem the engineers soon realized was that scalability implies the usage of many
devices, and if a system contains many devices, it is very likely that some of the devices
will not work currently. These ever-present outages make it difficult to guarantee relia-
bility.
Out of this dilemma they came up with a software-solution called Dynamo. In their
paper they only describe the ideas behind the data store, but it was not published as
software up to now. Nevertheless, the authors state that they implemented Dynamo
using Java as programing language. Amazon uses Dynamo within the company for hun-
dreds of their services, which all have different requirements. This is why the system
needs to be flexible for different uses.
For Amazon is was clear that, because of the vast amount of data, this data had to be
distributed over several machines. This led to the question, how these machines can be
kept in a consistent state and still guarantee fast response times.

2.1.1 Design Considerations

• The data is distributed over many machines: For availability reasons, there need
to be replicas on different machines in different data centers. This distribution
must be somehow balanced, as it is important that there is no machine which has
to handle a majority of data and accesses. Also, the load should be distributed
according to the capabilities of the machine.

• Machines will fail and the system must be able to handle this.

• It must always be possible to write data (Dynamo is a so-called ”always writable”
data store), even if this leads into inconsistencies. This comes from the nature of

1http://www.amazon.com

10

http://www.amazon.com

Amazons business: It is better to provide a inconsistent service than not to provide
a service at all (and loose money).

• Read and write accesses to the data store must be provided within a given time, it
is not possible to wait for a request a very long time. Most of their services based
upon Dynamo are latency sensitive.

• There is no need to enumerate or iterate the data store. All accesses to the data
are made by an key. This key uniquely identifies each object stored in the system.
The systems doesn’t care what data is effectively stored, it only cares for the key.
The data handled is relatively small (less than 1 MB).

• The system is symmetric and decentralized: This means that every node in the
system has the same set of responsibilities, there are no ”master”-nodes which
would lead to a single point of failure. Each node can be queried for each object, if
it is not stored on the node, the request will be forwarded to a appropriate node.

2.1.2 System Design

For choosing the nodes where to store the objects, Dynamo relies on a consistent hashing
scheme [Karger et al., 1997]. This means that the output range of a hash function is
treated as a ring (so the highest value of the hash function wraps around to the lowest
value). Each node of the system randomly selects a value withing the range of the hash
function. This value is called the ”position” of the node on the ring.
As mentioned above, each object is identified by a key. By hashing the key, every data
object is assigned to a position on the ring. The node where this object should be
stored (the so-called coordinator node) is the first node found when walking the ring in
clockwise direction. This makes each node responsible for the region of the ring between
its predecessor and itself.

A

B

CD

E

F

G

Key K

Figure 2.1: Node B is responsible for all keys starting
from A up to B. This includes the key K. So
the data with key K will be stored on node
B.

Because each node in the ring must now on which nodes which objects are stored, there
must be a protocol for exchanging information about responsibilities. Resulting from the
decentralized structure of Dynamo, there can’t be a ”controller”-node which maintains
the information which nodes are available and which nodes stores which object. For
these reasons, the gossip-based membership protocol is used: Each node selects some

11

nodes and asks them about their status and their knowledge about other nodes once per
second.

2.1.3 Replication Design

Each object which should be stored in the system in replicated at N hosts, where N (the
so-called replication count) can be configured by the developer. Some of these replicas
are written in a asynchronous way, so the system returns after writing the first W copy
and writes the remaining (up to N −W) copies in background. This so-called write-
quorum W can also be configured by the user.
The first copy is stored on the coordinator node, the remaining N − 1 replicates are
stored on the N − 1 clockwise successor nodes in the ring. This leads to the fact that a
node is responsible for storing keys in the region between itself and its N th predecessor.

A

B

CD

E

F

G

Key K

Nodes storing
key K

Responsibility
of Node G

Figure 2.2: Key K is stored with a replica-
tion count of 3. It is stored on
node B, while copies are kept
on nodes C and D. Node G is re-
sponsible for all keys from D to
G (left black arc).

2.1.4 Operation Design

Dynamo only support two basic operations: put(key, value) and get(key). There
are three configurable values which influence these operations:

1. N , the replication count. As mentioned above, this is the number of nodes that
hold a copy of a object. The replication count can be at most the amount of nodes
available in the system.

2. W , the write threshold. This specifies how many nodes must participate in a write
operation to make it return successfully. W must be ≤ N .

3. R, the read threshold. Similar, this specifies how many copies must respond with
a value before the read request is answered. R must also be ≤ N .

Different constellations of N , W and R have impact on performance and consistency.
When setting R and W such that R + W > N , it is guaranteed, that the reader always
sees the most recent update, so no inconsistencies can occur (because there is always
one node which is in the read quorum and in the write quorum as well). The downside
of this setting is that the read or write operations are limited by the slowest node. For
this reason, normally R and W are usually less than N for better latency.

12

2.1.5 Handling Failures

Due to the asynchronous nature of the replication design inconsistencies can occur.
Dynamo implements some mechanisms to solve these problems:

2.1.5.1 Conflict Resolution

Even under optimal operation conditions, so if there are no node or network failures,
there might be some periods in which the replicas of an object are in an inconsistent
state because some copies haven’t received the most recent updates yet.
These inconsistencies lead into several different version being read. There are two pos-
sibilities for handling these differences: It might be possible for the system to determine
the authoritative version without the interaction of the application using the database.
This is the simpler case called syntactic reconciliation. Most times this happens by se-
lecting the newer version and discarding the older one.
The harder case occurs, if version branching happens, which means that several versions
of an object exist and it is not possible to order them by time. This happens if updates
are made and there is a network partition (so there are two nodes which are running and
accessible, but can’t communicate which each other). Under this condition, Dynamo
can’t use syntactic reconciliation and returns all available versions to the application.
Now the application can decide how to merge these versions back into one consistent
state. This is called semantic reconciliation.

2.1.5.2 Vector Clocks

For finding out which versions can be reconciled on the system and which must be
handled on the application side Dynamo uses Vector Clocks [see also Lamport, 1978].
In short, each object is assigned a list of (node, counter) tuples. By examining the
vector clocks, you can check whether two objects are in a temporal order or happened
in parallel.

2.1.5.3 Hinted Handoff

When writing a object with a replication count of N , Dynamo tries to write to the N
designated nodes in the ring. If one of these nodes is down or unreachable, Dynamo
check the next node on ring until if finds a place where it can store the copy. This
temporary replication node saves the copy in a special database together with a hint
which node was the intended recipient of the replica. When the failing node recovers,
the replica is transferred over to the original node and the temporary copy is deleted.
This mechanism, which speeds up recovering after a temporary node failure, is called
Hinted Handoff.
So in the example above (see figure 2.2), if node D is not available when trying to write
a value for key K, the next node on the ring, node E, is chosen to store the third copy.
When node D recovers, it moves the replica from node E back to itself.

13

2.1.5.4 Read Repair

If a node hasn’t received the latest updates for some of its replicas, this gets detected
upon read: If some nodes response with a older version to an read request, the system
automatically sends these outdated nodes the most recent versions. This is done after
returning the most recent version to the application and so does not slow down the
normal operations.

2.1.5.5 Anti Entropy Protocol

If a node is was down and the hint from the hinted handoff is lost (possibly also due
to another node failure), the recovering node has old versions. For detecting these
inconsistencies the Anti Entropy Protocol is used. All nodes periodically exchange hash
sums (so-called Merkle trees, see also Merkle [1988]) on their data. If the hashes don’t
match, this means that there are old versions on one of the nodes. These nodes then
exchange the real data and so all nodes get the same versions again. Using hashes
minimizes the amount of data that needs to be transferred.

2.2 Google BigTable

Google2 ran into the same set of problems as Amazon. In the time between 2003 and
2006 several papers [Ghemawat et al., 2003; Burrows, 2006; Chang et al., 2006] were
published by Google engineers. Although the overall problems, the huge amount of
data and the problem of availability, were the same as with Amazon, Google had other
priorities: They needed a data store to handle different-size entries, from a few kilobytes
to some gigabytes. Also their focus was more on bulk processing than on real time
queries. Dynamo is optimized for the later because these request occur the most time in
web applications. Google calls his data store BigTable. It is used by various applications
within the Google company.

2.2.1 Design Considerations

• Google needed a system flexible enough to provide a back end store for various
tools, it must provide ”scalability, high performance and high availability”.

• BigTable focuses on consistency: If the network fails, some nodes or operations get
unavailable.

• Data is uniquely identified by a key. The data it self is not unstructured as with
Dynamo but instead can be structured using a so-called column-oriented design.

2http://www.google.com

14

http://www.google.com

2.2.2 Existing Components

BigTable uses two services for the creation of the distributed system which were devel-
oped seperately:

2.2.2.1 Google File System

The Google File System (GFS published in 2003 by Ghemawat et al. [2003]) is a dis-
tributed file system. This means that large amounts of data are stored on hundreds or
even thousands of computers. Because of the need of availability and scalability, GFS
distributes the files over several nodes, making replicas and splitting the files for faster
access. The system typically stores file in the range from several hundred megabytes.
Instead of a typical file system interface (for example via a POSIX-Layer), Google choose
to implement the API as a library which is included in every application which accesses
the file system.
A GFS cluster is made of a single master and several chunkservers. Each of these run
on stock Linux machines. The files, which are stored on the file system, are divided
into fixed-size chunks. Each chunk has a unique chunkhandle which identifies it globally.
While the chunkserver keep the chunks in their memory and store them on hard disk,
the master keeps track of the location of the chunks, their metadata and those of the
files (including a mapping between files and their chunks). To increase availability the
chunks are replicated over several chunkservers. When writing or reading files clients
first ask the master for the appropriate chunkservers storing the file and then commu-
nicate with this chunkservers directly without further invocation of the master. This
prevents the single master from becoming a bottleneck because no data is transferred
through the master. The master keeps track of the replication, it creates new copies if
nodes go down.
GFS uses a simple and relaxed consistency model: Two data mutations are supported:
record appends and writes. Record appends means that a bunch of data (the ”record”)
is appended to a file at least once at a position the server may choose. The server will
try to append the record to a file a second time if the first write was made invalid by
a concurrent write. Normal writes, where the client may specify the location in the file
where the data should be written, don’t guarantee that the data is written to the file at
all. If a concurrent operation is made, the data of a write may be completely lost. GFS
guarantees that successful writes (this is true for both, record appends and writes) are
the same on all replicas except for a small time when the data is transferred between
the nodes. The fact that some parts of a file might be invalid (either due to concurrent
writes or due to a incomplete replication) must be handled by the application. Google
uses checksums to find invalid records and skip them. As appends are the most com-
mon operation on a GFS, the missing guarantees on writes are not a problem, but the
programmer must be aware of this. If the application needs to lock the access to a file
to prevent concurrent access, it can use a lock service like Chubby.
Using a schema like this, GFS can be used to save files which can be accessed in a

15

fast way and can be read and written even if some node fails. This means that GFS
implements a distributed file system.

2.2.2.2 Chubby Lock Service

The Chubby lock service (published in 2006 by Burrows [2006]) provides a system which
is used within a distributed system. The purpose of the service is to allow its clients
to synchronize their work and to exchange basic information. The clients can obtain
coarse-grained locks from the service. This means that (in contrast to so-called fine-
grained locks) the locks are typically held for a long duration (minutes and more). Each
lock is identified by a path, similar to paths in a file system. It is possible to associate
additional metadata to a lock which can be used by the clients to exchange information.
The locks are ”advisory”, which means that the data for a lock can be read without
acquiring it if the client wants to do that. There are some simple operations which the
client can issue via a RPC to the server:

• open() and close(): Opens and closes a lock handle, but does not try to lock.

• acquire(): Acquires the lock which is represented by a handle.

• getContents(), setContents(): Returns and sets the metadata for a lock handle
which is stored together with the lock.

Chubby is operated by a single master which stores the lock information. This master
continuously replicates the information to some standby masters using the Paxos pro-
tocol [Lamport, 2001; Chandra et al., 2007]. If the master fails, a new one is elected
and takes over. During this time, (usually between 3 and 30 seconds, the lock service is
unavailable. The clients should be able to handle this outages.

2.2.3 BigTable Architecture

BigTable consists of three components: A library which is linked to the clients using the
database, a master server and many so-called tablet servers.
The row range of the data is partitioned into many so-called tablets. Each of these
tablets is assigned to a single tablet server. As result short row scans are efficient because
all entries are stored together in the same tablet on the same server. This tablet server
handles the read and write operations to the tablets it serves and splits and redistributes
the tablets that have grown too large.
The master keeps track which server stores a specific tablet, it is responsible for tracking
the removal, failure and addition of nodes to the system. As with GFS, no data is
transferred through the master, it only points out which tablet server can be asked for
the information and client can then retrieve the data from this node without intervention
of the master. This heavily reduces the load of the master because the client library
caches tablet locations. To track tablet servers BigTable uses Chubby: When starting
up each tablet server creates and acquires a lock on a uniquely named file. The master
monitors the directory where these files are created and can react to certain conditions:

16

GFS Chunkserver

Linux Filesystem

GFS Chunkserver

Linux Filesystem

GFS Master

BT Tablet Server

In Memory Store

GFS Client

BT Tablet Server

In Memory Store

GFS Client

BT Master

Chubby Manager

Client Control flow
Data flow

BT: BigTable
GFS: Google File System

BT Library

Figure 2.3: Architecture of Google BigTable: BigTable (BT) is created on top of two
existing components: Google File System (GFS) and the Chubby lock ser-
vice. While the control flow (dotted lines) is mainly between clients and the
managers, the data (dashed lines) is transferred between the clients and the
providers without the master.

If a new file is created (and a lock acquired) this means that a new tablet server is
starting up and data can be assigned to this node. If a lock is released (because of a
timeout), the master knows that a node lost connection and should be considered down.
When starting up the Master itself scans the lock directory in Chubby and then ask
every tablet server for their tablet assignments.
The tablet servers hold parts of their tablets which they store in memory while the whole
tablet is stored on the distributed GFS. Write requests to a tablet are handled by the
matching (single) tablet server. This server appends the write requests to its commit-log
(stored on GFS) and then alters it data-set (in memory and on GFS). Read requests
are answered by the tablet server either from memory or from the data-files on GFS.
Periodically the node also dumps the current dataset onto the GFS and thus makes the
commit-log shorter and easier to handle.

2.2.4 Handling Failures

Because of the single master concept BigTable is always consistent. For BigTable itself
two components can fail:

1. Master: If the master is unreachable, the whole database fails and can’t be ac-

17

cessed by new clients. Clients, which still have information about the tablet servers,
can try to access them. This means that network partitions are no consistency but
an availability problem for BigTable. Because of the desired usage pattern these
kinds of failures are acceptable. To prevent major downtimes in case the master
node fails, Google holds hot replicas of the master in standby which can take over
after a short downtime.

2. Tablet servers: If the master detects the failure of a tablet server, it starts a new
node and assigns the tablets from the old node to the new one. Because the data
and the commit-log are stored in GFS, the new node can simply resume operation.

18

3 Implementations

3.1 Apache Cassandra

Apache Cassandra1 [Hewitt, 2010; Lakshman and Malik, 2010] was released as open
source software in 2008. It is based upon the Dynamo paper (see chapter 2.1) but also
adds features from BigTable (see chapter 2.2). The first implementation was written and
used at Facebook to save and search a large amount (150 terabytes) of message which
uses sent to each other. Today, Cassandra is used by companies like Twitter2 or Digg3

to handle their large amounts of data.
Cassandras focus was always on real time queries which were on the one side small and
easy queries but on the other side must be answered very fast because the result of a
web service is dependent upon them.

3.1.1 Design Considerations

Cassandra is a monolithic software written in Java, containing every component needed
to run a distributed database. It is constructed around some major ideas which will be
explained next.

3.1.1.1 Decentralized

Cassandra is like Dynamo a decentralized system. This means that there is no single
master concept like in BigTable or HBase. Every node in Cassandra functions the same
way, each can answer the same queries and stores the same type of data. This means on
the other hand, that there is no coordinator which controls the operation of the cluster.
Instead of this, the nodes must do this on their own. This decentralization leads to two
advantages: As each node is equal, its simpler to use and it avoids downtimes.

3.1.1.2 High Availability

Cassandra is highly available, which means that, even if nodes or the network fail, the
data stored on the cluster is still available. It is also possible to replace nodes with no
downtime to the system. Cassandra automatically detects failures and moves data to
keep it save.

1http://cassandra.apache.org/
2A microblogging website, see http://www.twitter.com
3A social news website, see http://www.digg.com

19

http://cassandra.apache.org/
http://www.twitter.com
http://www.digg.com

3.1.1.3 Tunable Consistency

Cassandra is designed to serve as a data store for many different services. As each of
these services might have other requirements in terms of performance and consistency,
Cassandra makes it possible for the developers to decide how much performance they
are willing to give up for a gain in availability. Cassandra can be everything from a
strict consistent data store, where every read requests always gets the latest data, to a
highly eventual consistent system, where old data is sometimes provided for a huge gain
in availability and performance.

3.1.2 Data Schema

In contrast to Dynamo, which does not structure the data which is saved in the system,
Cassandra uses the same data model as BigTable does: Each row of data is structured
into columns. This schema is called column-oriented. Cassandra supports secondary
indexes for faster queries when not selecting by the primary key. Multiple column
families (what would be called ”tables” in a RDMS) can be grouped together in one
keyspace (”database” or ”schema” in a RDMS). It is possible to iterate over the rows
using range queries, although ordered range queries tend to get very inefficient.

3.1.3 Typical Use Cases

Cassandra is written for large deployments. It is not meant to outrange traditional
RDMS when it comes to small, one node setups. Cassandra is also optimized for a huge
write throughput, so it’s ideal for storing user activities in a web application. Cassandra
also supports geographic replication out of box: Data can be stored in multiple data
centers to ensure availability even if a whole data center fails.

3.1.4 System Design

Cassandra clusters are structured in the same way than a Dynamo system: Each node
is responsible for a part of a ring which represents the whole key range. A so-called
Toaken assigned to each node before the first start-up. The node holds all data with
keys in the range of its own token until the token of the next node on the ring. If a new
node is added to a cluster, the node with the highest load gives away half of its range
to the newly created one.
The placement of replicas can be configured per cluster. Several strategies are shipped
together with Cassandra. Because the names were changed recently, the old names are
provided as well.

• SimpleStrategy (former RackUnawareStrategy): Replicas are simply placed on
the next nodes on the ring. This is what the Dynamo paper proposed as strategy.

• OldNetworkTopologyStrategy (former RackAwareStrategy): The first replica is
placed in another data center, the second replica is stored in the same data center
as the original version but in another rack. Eventually remaining replicas are

20

distributed on the next positions on the ring. This strategy guarantees, that the
data can survive a rack outage and a data center outage.

• NetworkTopologyStrategy: This new strategy allows full configuration for the
administrator where which replicas should be stored.

Just like with Dynamo, each node can handle all read and write operations and eventually
forwards the queries to nodes which can answer the requests. The failure handling
mechanisms which were proposed by Amazon (see section 2.1.5) like hinted handoff, read
repair and anti-entropy protocol were implemented similarly in Cassandra. Cassandra
does not support semantic reconciliation: If two conflicting versions of a object exist, the
older one is discarded. This is why no vector clocks are needed (and thus implemented)
and versioning is done by simple timestamps. Although timestamps sound like a simple
solution, it is difficult to keep the hardware clocks of the nodes in sync over the whole
cluster. Protocols like NTP can help to solve this problem.
Clients can access Cassandra using a Thrift-API [Hewitt, 2010, p. 156] which exists for
various programming languages.

3.1.5 Scaling Mechanisms and Consistency

There are three main factors which have major influence on performance, availability
and consistency:

3.1.5.1 Node Count

Adding more nodes to the ring helps to lower the load of heavily used nodes. This speeds
up read and write accesses because a smaller region of the keyspace must be handled by
each node. If a new node is added to the ring, it typically ”steals” half of the key range
which is used by the most used node. This is somehow problematic, as adding a new
node reduces only the load on one specific machine and does not reduce the average load
on all machines. By reducing the amount of data each node must store, the chance that
the whole dataset fits into memory is increased. Accesses which can be answered directly
from the main memory are multiple orders of magnitude faster than those which must
read from hard disk. The more nodes you add, the higher you can set the replication
count which increases availability. Cassandra supports adding nodes while keeping the
cluster operational.
Nodes can be remove from the ring after they have been ”decommissioned”. This means
that all their data is moved to another node in the ring. Also, dead nodes can be removed
permanently. This is needed because normally Cassandra waits for a dead node to come
online again after a failure.

3.1.5.2 Replication Factor

The replication factor (or replication count) N determines how many copies of a single
data object are stored on the ring. The more copies you store, the faster read accesses

21

will get: If asking a node for a row it gets more likely that the node can answer the
request directly without forwarding. On the other hand, write accesses might get slower:
More copies must be updated, so more time is consumed and more load is put on the
nodes.
The replication count can be configured per keyspace. Increasing the replication count is
not supported without interference but decreasing can be done without influence on the
service. A typical replication factor is three, where one copy can be stored in another
data center for increased availability.

3.1.5.3 Consistency Levels

A application developer can specify ”consistency levels” for every request which is issued
to the cluster. So in contrast to the replication factor, which is a fixed setting, the
consistency levels can be set dynamically for every use case and request. These levels
control how many replicas are queried when reading and how many copies are updated
synchronously before returning on a write request. Choosing these levels has influence
on consistency and performance.
For read requests these consistency-levels are:

• ONE: Immediately returns the data from the first node that responded to the query.
This achieves the highest performance but the copy could be outdated which leads
to inconsistencies.

• QUORUM: Issues a query to all nodes which hold a copy of the row. The system
waits until at least half of the nodes has answered, so a majority of the nodes has
responded. Out of the answers the most recent value is returned to the client. This
setting provides a good tradeoff between performance and consistency. Inconsis-
tencies can still happen, but are very unlikely. The system is still able to handle
node outages.

• ALL: Query all nodes which hold a copy of the row. Return the row with the most
recent timestamp. Guarantees strong consistency but if a node goes down, the
request can’t be answered.

Similar levels can be configured for write requests although their meanings are differ-
ent:

• ZERO: Immediately return to the client after the requests has been received. All
write operation will happen in background. If the node fails before it has made
the modifications the write is completely lost.

• ANY: Make sure that the value has been written to at least one node, hints (see
section 2.1.5.3) count as a write.

• ONE: Returns if at least one of the designated nodes has written the request.

• QUORUM: The write must be done by a majority of the replicas.

22

• ALL: Ensure that all replicas have written the update.

Any configuration where R+W > N is considered strong consistent. In this equation,
R is the amount of replicas which are queried for a read operation, W is the same for
writes and N is the replication count. For example, the following setup are strongs
consistent:

• Read consistency ONE, write consistency ALL

• Read consistency ALL, write consistency ONE

• Read consistency QUORUM, write consistency QUORUM

3.2 Riak

Riak4 is another implementation which follows the Dynamo paper. It was written by
Akamai5 engineers and is released both as a feature reduce open source version and a
full featured commercial version. The company ”Bashoo” sells the commercial version
together with support and maintains and writes nearly all of the source code. Riak
is written mostly in Erlang (a functional programming language) while some parts are
written in JavaScript. Clients can communicate with Riak using a REST-API or via
Google’s Protocol Buffers, where the later is about two times faster but is harder to
debug. One of the users of Riak is the Mozilla Foundation which stores crash reports
generated by their popular Firefox Browser to a Riak database.
Riak is, like Cassandra (see section 3.1), based upon the ideas published in the Dynamo
paper. Because of the same origins, only the differences between Riak and Cassandra
are outlined here.

3.2.1 Data Model

• In regards to the data model Riak stays closer to the Dynamo proposal: Every row
stored in the database is completely schema-less and interpreted as byte-stream.
It is up to the client to separate columns or fields in the rows to structure the data.

• The so-called back end can be configured for each node: In this back end the nodes
store their rows on hard disk. Multiple back ends are available and can be used
depending on the type of information which should be stored on each node.

• There is a MapReduce [see White, 2011, p. 15] interface directly implemented
in Riak: The user can ask the data store to run a MapReduce task written in
JavaScript without any external tools or libraries.

• Riak allows to add so-called ”links” between rows. These links can be followed
automatically when reading a row or doing map-reduce jobs and can be used to
model relations between rows.

4http://www.basho.com/products_riak_overview.php
5A content distribution network, see http://www.akamai.com

23

http://www.basho.com/products_riak_overview.php
http://www.akamai.com

3.2.2 System Design

Before the first launch of a cluster, the ring-creation-size has to be set by the admin-
istrator. This number denominates in how many parts the ring should be split. After
this splitting, every node gets some parts of the ring keyspace. If new nodes join, each
of the old machines give away some of their parts. This makes it possible to reduce the
load of all machines when adding a new node.
The replication count can be configured per bucket. A bucket is the same as a keyspace
in Cassandra.
Riak chooses to implement Vector-Clocks, like the Dynamo paper intended. This makes
clock synchronization like it is needed for Cassandra obsolete and simplifies the cluster
setup.
Riak does not support configurable placement of replicas like Cassandra does. So in
Riak the replicas simply get placed on the next nodes in the ring. There is no possibility
to enforce the storage of copies in different data centers.
Consistency levels for operations do not differ much from those implemented in Cassan-
dra. For a read request, the developer can supply the so-called read-quorum out of the
following values:

• one, quorum and all with the same semantics as those in Cassandra

• Any integer r, which means that at least r nodes are queried and the most recent
result of those nodes is returned to the client.

For a write request two different values can be specified: The write-quorum, which
means, how many nodes must acknowledge the successful reception of the write request
and the durable-write-quorum, which defines how many nodes must have saved the write
request to their durable storage (so the hard disk) before returning. Both settings take
values from the same set as the read request from above. A default value for each of these
quorums can be configured for each bucket. Any operation can override the defaults be
explicitly specifying them.

3.3 Project Voldemort

In 2009, LinkedIn6 released their implementation of the ideas from the Dynamo paper
called Project Voldemort7. They wrote the project in Java and stayed very close to the
paper which leads to a big similarity with Riak. Voldemort also features different storage
back ends which includes a MySQL data store.
The project has staled soon after its release. As only developers from LinkedIn are
involved in the project, progress is very slow and no new releases have been made since
June 2010. Due to the similarity with Cassandra, no further analysis has been made
concerning Project Voldemort.

6A social network, see http://www.linkedin.com/
7http://project-voldemort.com/

24

http://www.linkedin.com/
http://project-voldemort.com/

3.4 HBase

The Apache HBase8 (White [2011, pp. 411ff], Khetrapal and Ganesh [2008]) project is
closely modelled after the Google BigTable paper (see section 2.2). The first release was
made in 2007 when it was shipped bundled together with the Apache Hadoop project.
In 2010 it became a Apache Top Level Project which is independently released from
Hadoop but still dependent upon it. Today, major users like Facebook9 contribute their
efforts to make HBase better back to the project.

3.4.1 Subcomponents

While Apache Cassandra (see section 3.1) is a monolithic system, HBase consists of many
modules and services which form the distributed database HBase together. Most of the
concepts and the services used in BigTable can be found again in HBase, for example
Chubby, GFS or the data model. Although all HBase modules are written in Java, it is
only tested on Linux-Systems and not on Windows. In a first step the fragments which
make up HBase are introduced and later their interaction is explained.

3.4.1.1 ZooKeeper

Apache ZooKeeper10 (Hunt et al. [2010], White [2011, pp. 441ff]) is a service for storing
information and accessing it from another distributed system. ZooKeeper stores infor-
mation in a file-like structure where the files (so-called znodes) are limited to a size of
1 megabyte but the usual amount of data is much smaller. Typically ZooKeeper is used
to store information which must be accessible by many nodes. For this ZooKeeper can
be regarded as a distributed database (see figure 3.1) it-self although it is normally used
to implement a database on top on it and only use it for information exchange between
the nodes of the database. Example use-cases for ZooKeeper are:

• A configuration service, where the configuration for a distributed application is
stored in a ZooKeeper ensemble for easier maintenance.

• A distributed file system, where ZooKeeper stores, which parts of the data are
distribute on which file system-node.

• A lock service: Using numbered files as locks, distributed applications can assure
that only one thread enters a critical section. This can be used for Master elections
in distributed databases.

ZooKeeper stores the information in a hierarchical namespace where each znode can
store information and can have further znodes as children. The znodes are addressed
like in a file system using slashes as delimiters. You can list all children of a znode and

8http://hbase.apache.org/
9A social network, see http://www.facebook.com

10http://zookeeper.apache.org/

25

http://hbase.apache.org/
http://www.facebook.com
http://zookeeper.apache.org/

ZooKeeper service
leaderfollower follower

Client Client Client Client Client Client

read read read read readwrite

Figure 3.1: A typical ZooKeeper ensemble consisting of three nodes. The center node
was elected as leader, the other two nodes are followers. While read re-
quests by the clients can be handled at each node locally, write requests first
get forwarded to the leader which then assures that every follower gets the
updates.

the service can notify clients if children are created or deleted.
The ZooKeeper service is replicated of a set of machines, a so-called ZooKeeper ensemble
or ZooKeeper quorum. Each of these nodes holds‘ the whole dataset in their memory
to get a high throughput. This leads to the fact that the amount of data which can
be stored in a ensemble is limited by the memory of a individual node. This is not a
issue because as mentioned above, typically only very small files are stored. The nodes
in a ensemble know each other and have a communication channel established. Due to
the synchronization scheme involved, ZooKeeper guarantees that it can handle any node
failure if a majority of the nodes in the ensemble are up. This means that if there are N
nodes in the cluster it is still in working order if only |N2 |+ 1| nodes are available. The
nodes elect a so-called Leader, all the other nodes become Followers. If the Leader fails,
a new one is elected out of the remaining nodes.
A client can connect to each of the nodes and issue read or write requests. Write re-
quests are captured by the contacted node and forwarded to the leader. The leader now
forwards the write request to all the leaders and makes sure a majority of all nodes has
written the file before acknowledging the write request. A read request is answered from
the local memory of each node and thus is very fast. The fact that only half of the
nodes might have received an update leads to the problem, that some read requests may

26

provide old results. If a client wants up-to-date information, it can issue a sync query
before its read request which makes the node to ”catch up” to the most recent state.
ZooKeeper has some similarities with the concepts of Google’s Chubby (see section
2.2.2.2): The hierarchical structure and the notification system are some examples. But
there are features which are not implemented by ZooKeeper but in Chubby: Most im-
portant the out of the box locking mechanism provided by Chubby, where a lock can be
established on each file, is not implemented in ZooKeeper although this behaviour can
be mimicked using sequentially numbered znodes.

3.4.1.2 Hadoop Distributed File System

DataNode 1 DataNode 2 DataNode 3

A

C
B C

B

A

File 1
A
B

File 2
C

NameNode Figure 3.2: Architecture of the Hadoop Dis-
tributed File System: A single Na-
meNode and three DataNodes. Files
are splited into blocks (file 1 into
block A and B, file 2 into block C).
These blocks are distributed over the
DataNodes: For example, blocks A
and C are stored on DataNode 1.
The NameNode keeps information
where the blocks are stored.

Like BigTable, HBase also relies on the techniques which are implemented in a dis-
tributed file system. HBase uses its own file system called Hadoop Distributed File system
or short HDFS 11 [White, 2011, pp. 41ff]. It is a subproject of Apache Hadoop and is
based on the ideas of the Google File System paper (see section 2.2.2.1).
As a distributed system HDFS (see figure 3.2) consists of a single Master, the NameNode,
and many DataNodes (these are called Chunkservers in GFS). Each file which should
be stored on the file system is split into many equal-sized blocks. Typically these blocks
are 64 megabytes large and are stored on the DataNodes. The NameNode holds the
metadata which is:

1. the metadata for each file: Its name, size, ownership, permissions and timestamps

2. a association between the blocks and files: Which blocks belong to which files

3. block storage information: Which DataNodes store a specific block

This data is regularly dumped to hard disk of the NameNode. To be save from node
outages, the blocks are replicated over many nodes. The replication count can be config-
ured per file. Because of the large block size, HDFS is not suitable for many small files.
HDFS can not be used without the Master, if it fails, the whole system gets unavailable.
Using a hot standby NameNode, the downtime can be reduced. By assigning additional

11http://hadoop.apache.org/hdfs/

27

http://hadoop.apache.org/hdfs/

DataNodes to a HDFS cluster, more space is available and more replicas can be stored
per file.
In contrast to ordinary file systems, HDFS has some limitations concerning file access:

• You can only append to a file, no random access (like the seek operation) is
allowed.

• No concurrent access is supported: If one client has opened a file, no other client
may access it until it is closed.

• It is not guaranteed that a immediate read after a write leads to the expected
results. The client can manually wait for a sync if it needs up-to-date data.

Because of this limitations, access to HDFS is not offered via a POSIX-Layer but instead
using a library which is linked to the program. Command-line tools which are shipped
together with HDFS can be used to transfer files from the local file system to HDFS and
back.
If a client wants to read a file from the file system, it first queries the NameNode for the
nearest locations of all the blocks of the file. The client then contacts the appropriate
DataNodes and reads the data from them. Again, like in BigTable and GFS, no data
flows through the Master which keeps the load low. If a new file should be written, first
the metadata is transmitted to the NameNode. Then, the file is split into blocks and
for each block the NameNode is queried for a list of Nodes where the blocks should be
stored. The client then transfers the block to the first DataNode which forwards the
block to the next node. This is repeated until all replicas of the block have been written.

3.4.2 HBase Architecture

HBase is built on top of HDFS and supports real-time read and write random access
to very large datasets. Data is grouped into tables (like in traditional RDMS). Each
row in these tables is uniquely identified by a row-key. The row-data it self is stored
in a column-oriented way (like in BigTable). Nevertheless the schema of HBase is out
of scope of this thesis. Clients can access HBase from various programming languages
using a API generated by Thrift [Hewitt, 2010, p. 156].
Tables are partitioned into so-called regions. Each region consists of all rows with their
row key in specific bounds. Initially all data is stored in a single region. If the region
grows to large, it is split into two regions and so forth. Regions are the unit of distribu-
tion, this makes it possible to store tables much larger than what a single machine can
handle.
HBase consists of a single master (the HBase Master) and a cluster of slaves (called
Region Servers). Each region is stored on exactly one Region Server. The Master takes
the administrative work, it assigns regions to the Region Servers and recovers from the
failure of them. The Master also splits regions if they grow to large. HBase uses a
ZooKeeper ensemble for Master failover. This is important because using only one Mas-
ter would impose a single point of failure. This is avoided by keeping several Masters in
standby mode. Using a voting protocol on a ZooKeeper cluster, a new Master is elected

28

Master

Region Server Region Server

Name Node DataNode

DataNode

DataNode

HDFS

commit logs
data images

Node

Leader

ZooKeeper

master election
root table position

Client

region location

data

HBase

Figure 3.3: HBase components: HBase consists of a single Master and multiple Region
Servers. Each of these Region Servers saves its commit logs and data images
to a HDFS cluster. ZooKeeper is used for administrative operations. Mul-
tiple components can run on the same physical machine. For example, each
node, which runs a Region Server could run a HDFS DataNode as well.

if the designated one fails.
The information which region is stored on which server is also stored in a HBase table.
This leads into problems when trying to find out where this metatable is stored. This is
a second point where the ZooKeeper service is used.
Typical operations by clients first connect to the Master, querying for the Region Server
which stores the rows that should be read or modified. Then the Region Server is con-
tacted by the client. The location-information is cached by the clients to keep the load
of the Master low.
Each Region Server only handles access to the regions it stores. If a new write request
is issued, the Region Server first writes a new log entry synchronously to the underlying
HDFS, modifies its internal data structures and then acknowledges the operation. If the
whole region does not fit into main memory, parts of the data can be stored on hard
disk. Periodically, the commit-log is aggregated to a new data image in background on
each Region Server.

3.4.2.1 Handling Failures

Two types of errors can occur on a HBase system (compare to the failure handling in
BigTable in section 2.2.4)

• Failure of the Master: Like mentioned above, a new Master can be elected. This
feature is quite new, old versions on HBase were not able to handle Master failures.
Thus the whole system became unavailable until a new Master was bootstrapped
by hand. Now by using the automatic failover nearly no downtime is involved.

29

• Failure of Region Servers: If a Region Server fails, the Master will assign a new
node for the region. This new machine will read the data image and the commit
logs from HDFS and can then take over.

3.4.3 Scaling Mechanisms

In HBase there is no such thing like a replication count. Each row of a table is stored
on exactly one Region Server. The only scaling mechanisms is to add more nodes to the
cluster: This makes the regions smaller and so takes load from the servers or provides
additional space. It is advantageous if each Region Server can store its entire region in
the main memory. Adding further nodes makes this possible and so speeds up both read
and write operations on the cluster.
The performance of the HDFS has immediate influence on the performance and avail-
ability of HBase. For each HBase cluster the replication count of the commit log and
the data images can be set. Increasing this value also increases the time a write requests
needs because the commit-log has to be saved on more nodes. On the other hand, a
larger replication-count for the commit-logs makes the log (and so the data) more robust
against node failures.
It is possible to install the HDFS DataNode and the HBase Region Server on the same
machine. HBase can then be instructed to save its logs on the local DataServer which
increases the throughput because of the fast communication. This leads into problems
if the machine fails: Then both, the Region Server and the DataNode, are unavailable
on the same time.

3.4.4 Consistency Guarantees

Using its single Master setup, HBase can guarantee strong consistency: Every read and
write operation is immediately visible to all clients, no outdated data is returned. The
tradeoff is, that both, the Region Servers and the Master, are single points of failures:
If one of them fails, some or all of the data is not available for a short period of time
until a replacement node has been established.

3.5 Redis

The previously described systems are designed to run on large clusters from the beginning
on and it makes no sense to deploy them on a single node. In contrast to this, the
following systems can be used on a single system and later on additional nodes can be
added to improve performance or availability.
One of those systems is Redis12. It was released as a small open source project in 2008
written in C, but has gained a huge momentum since the involvement of VMWare13 who
sponsor two full time developers. Additionally a large community of developers exists
so Riak can be regarded a living project.

12http://redis.io/
13Developer of virtualization solutions, see http://www.vmware.com

30

http://redis.io/
http://www.vmware.com

The central idea of Redis is to provide a key value store: Using a simple interface, data of
various types can be assigned to a key. Later on, the data can be requested again using
the key. It tries to keep all the data in the main memory of the system for performance
reasons. If there is not enough space, some parts can be swapped to disk using a virtual
memory system.

3.5.1 Scaling Techniques

As mentioned previously, Redis is designed as a single node system with some extensions
to make the system scalable.

3.5.1.1 Replication

Master

Slave

Slave

Replication
Information

Client

write operation
up-to-date reads

reads

reads

Figure 3.4: A possible replication setup:
The data from the master
gets replicated onto two slaves.
Read requests can be issued
on the slaves whereas write re-
quests must always go to the
master due to the read only
property of the slaves.

Redis supports unidirectional replication: If you have a running Redis-node (the mas-
ter), a second node (the slave) can replicate all the data from the master. This is done
in a asynchronous way which makes it possible that the slave is outdated for some time.
Although write requests to the slave are possible, they make no sense as they are silently
overwritten by the replication. In further versions writing to the slave will be prohib-
ited. This makes the slave a read-only node. Multiple slaves can be set up and even a
multi-level replication can be set up if replicated nodes get replicated again. Replication
always copies all data, so there is no selective replication on a subset of the data.
Because of the read only property of the replication slaves, this can only be used to scale
read requests: They can be distributed over all replicas whereas write requests always
have to go to the master. Also, if a client needs up to date data, it can query the master
for the data.

3.5.1.2 Sharding

To reduce load from a Redis setup or to store more data than a single node can handle,
sharding14 can be used. Sharding is release as a separate project, independent from

14https://github.com/jzawodn/redis-sharding

31

https://github.com/jzawodn/redis-sharding

Node 1 Node 2 Node 3

Redis Sharding

Client Client

Range a-d Range e-k Range k-z

read 'b' write 'y'read 'g'

Figure 3.5: Sharding in Redis: The data
is distributed on three nodes.
During setup, the key ranges
have been defined and assigned
to the nodes. A Redis sharding
server serves as a front end for
the clients: They only commu-
nicate with the sharding server
and transparently get the data
from the appropriate nodes.

Redis. To setup a sharded Redis cluster, first the keyspace is divided into to same
number of parts as there are nodes on the cluster. This can be done for example by
using a hash function on the keys and mapping the results of the hash function to the
servers. This distribution is fixed and can not be changed after the cluster has been
started. This means that no new nodes can be added after the initial setup. Each node
runs a normal Redis setup. A additional Redis sharding server distributes the requests
to the matching nodes. The clients only see one big cluster whereas the nodes don’t
know that other nodes exist. The only component which manages the cluster is the
sharding server. This simple setup allows it to increase the performance of Redis.
To guarantee availability, additional nodes can be deployed and set up as replicas of the
primary nodes. So if the keyspace is divided into three parts and so three primary nodes
exist additional three nodes can be used to act as replicas.

3.5.1.3 Redis Cluster

Because of the amount of nodes in a cluster is fixed when using sharding, a new front end
for Redis is currently written: Redis Cluster [Sanfilippo, 2010]. The cluster should consist
of various nodes, some of them store the actual data, others keep information about
where which key ranges are stored. Sharding can be regarded as a temporal substitution
until Redis Cluster is ready. Because of the experimental nature, the nonexistence of a
stable source and documentation no further work will be done here on Redis Cluster.

3.6 CouchDB

Apache CouchDB15 [Anderson et al., 2010] was developed by a IBM employee in 2005,
so it was written before the NoSQL movement got momentum. In 2008 it became a
Apache project and is since then maintained by a large community of developers which

15http://couchdb.apache.org/

32

http://couchdb.apache.org/

continuing involvement of IBM. It is written in Erlang because this functional program-
ming language was found ideal for concurrent distributed systems. It runs on Linux as
well as several mobile devices like iPhones and Android based phones.

3.6.1 Data Model

CouchDB features a document-oriented data model: It stores documents which can be
addressed by a unique key. The document itself is stored in JSON [Anderson et al., 2010,
pp. 231ff] which features a hierarchical structure within each document and enables the
developer to store objects in a data store while preserving their structure. For document
retrieval, only the document identifier and ranges of these identifies can be used, so
the documents can’t be searched by their contents directly. Nevertheless, queries can be
issued by using the built in map reduce function which enables aggregation and selection
using JavaScript. Furthermore, JavaScript can be used to validate the data which should
be stored in the documents. Each time a document is modified, a piece of code is run
to check whether the changes meet the requirements specified.

3.6.2 System Design

A CouchDB instance can be accessed using a simple REST protocol over HTTP. This
makes debugging easy due to the fact that HTTP is a well understood and widely
accepted protocol.
CouchDB is designed to store versioned copies of the documents. This means that every
update request on a document does not overwrite the old data but instead creates a new
instance. These versions are identified by a revision identifier (rev). If a read request is
issued without explicitly specifying a revision, the latest fully written version is returned.
The developer can also retrieve specific revisions of a document. This schema is called
”Multi-Version Concurrency Control” or ”MVCC”.
Using MVCC, CouchDB can implement read and write accesses without any locking:
Read requests don’t have to wait (or lock) for write requests to finish but instead return
the latest completely written version. This makes read and write requests very fast, even
under high load because all requests can be issued and processed in parallel.

3.6.3 Replication

To distribute data over several machines CouchDB supports replication. In contrast
to Redis (see section 3.5.1.1), which only supports simple unidirectional replication,
CouchDB contains advanced replication features:

3.6.3.1 Bidirectionality

Multiple CouchDB servers can synchronize their data using bidirectional replication.
This means that write requests can still be issued on all nodes and changes are replicated
onto all remaining nodes. This can even be used if there is no stable connection between

33

Node 2

Node 1

Node 3

Node 4

Node 5

Node 6

Figure 3.6: A CouchDB cluster consisting
of six devices: Four servers
replicate their data. A mobile
device (node 5) synchronizes
with node 1. A second mo-
bile device (node 6) also run-
ning CouchDB has currently
no connection to the cluster.
Nevertheless each device can
query their local data stores
and also update the documents
stored there. If the connec-
tion of node 6 reestablishes, all
changes are sent from node 4 to
node 6 and vice versa.

the nodes: If a connection can be established, all documents which have changed are
synchronized between both nodes. This makes CouchDB an ideal choice on mobile
devices where data can be kept in a local CouchDB instance and synchronized with a
node on the Internet if connectivity is present.
Every time replication should take place, the two databases are compared to find out
which documents have been added, which have changed and which have been deleted.
Then these changes are transmitted and applied on both sides so that afterwards each
node has the same data. Replication can be either continuously or done once. Replication
can be activated and configured separately for each database. It is even possible to write a
so-called replication filter function in JavaScript which specifies which documents should
be synchronized and which should only stay local.
Using this replication scheme data is always local and can be accessed in a fast and
efficient way. The replication is completely asynchronous, so there is no guarantee that
a update has been sent to all nodes. Of course this guarantee would be impossible due
to the existence of currently disconnected peers.
Replication in CouchDB should be regarded as a Master-Master replication because the
nodes are all equal and exchangeable. This is advantage over a master-slave setup like
HBase.

3.6.3.2 Consistency

Because of the asynchronous nature of replication in CouchDB, conflicts can occur and
the data store is only eventually consistent. This can happen if a document is currently
synchronized between two nodes and the connection fails. If both nodes now change
their local documents and the connection comes back again, two conflicting versions
exist. CouchDB solves this by storing all versions which exist. This fits into the MVCC
schema and is integrated seamlessly. A request for a document returns the most recent

34

version stored locally. The developer can query CouchDB for all versions and then merge
them using application logic and store them back into the storage. This is called semantic
reconciliation. CouchDB informs the developer that there are conflicting versions of a
document upon read queries by returning the additional conflicts:true flag.

3.6.4 Scaling Mechanisms

There are two possibilities to use the previously described properties of CouchDB to
build a scalable cluster.

3.6.4.1 Load Balancing

By adding nodes and setting up a continuous replication between them, the load of read
and write requests is distributed between those nodes. Still, the data has to fit into each
nodes memory because each nodes holds all data. The system must tolerate that some
of the data might be outdated for a short time and also must pay attention to conflicting
versions.
In contrast to the unidirectional replication in Redis, where write requests have to go
to a single master, in a clustered CouchDB setup each node can handle write requests.
This improves CouchDB’s scalability.

3.6.4.2 Sharding

If more data should be stored than a single node could save or the traffic generated by
replication is to much for a machine, the data must be split over several nodes. As with
Redis, CouchDB does not support this out of the box. There exists a own application
called CouchDB Lounge16 which acts as a proxy in front of a cluster of CouchDB nodes.
Lounge was developed for Meebo17 because they wanted to handle a huge amount of
data using CouchDB.
Lounge features two configuration steps: The first one, also called initial setup, defines,
how many so-called shards should be available. The whole key range is split into shards.
Now, using the second configuration, the shards are assigned to the actual nodes. This
second setup can be changed during run time while the amount of shards and the splitting
must stay static. This is why typically more shards are defined than nodes are available
and will be ever in the planed future. A shard can be assigned to multiple node for
availability reasons. Typically if the initial cluster size is ten nodes, 1000 shards are
created. Now for the initial setup, 100 shards are assigned to each node in the cluster.
If the load increases, 10 new nodes can be deployed and each of the old nodes gives
away half of their shards to a new one so that after the upsizing, each node handles 50
shards.

16http://tilgovi.github.com/couchdb-lounge/
17A web based instant messenger, see http://www.meebo.com

35

http://tilgovi.github.com/couchdb-lounge/
http://www.meebo.com

3.7 MongoDB

MongoDB18 [Dirolf and Chodorow, 2010] is a distributed data store written in C++ by
some developers, who worked previously for DoubleClick19. They created a startup
with the goal to create a software stack that was very scalable. One component of this
stack was the database system MongoDB which was later released as open source. Today
prominent users of MongoDB include GitHub20 and SourceForce21. MongoDB compares
to CouchDB but adds additional features for scalable clusters, like dynamic sharding,
which CouchDB does not support out of the box.

3.7.1 Data Design

MongoDB stores data as documents. Instead of addressing these documents using a
unique key like CouchDB does, MongoDB allows the developer to query for documents
by every field. This is made possible using indexes on every field in the documents.
CouchDB’s behaviour can be emulated by simply adding a id field to every document.
Due to the more flexible approach in MongoDB it is also possible to query for multiple
fields and use multiple criteria. The queries for read access are encoded in a JSON
document.
In contrast to CouchDB, which features a JSON protocol over HTTP, MongoDB uses
a compressed binary protocol. This saves traffic and increases the throughput and so
makes data transfers faster.

3.7.2 System Architecture

MongoDB can be run in two modes: Either as stand-alone version, where only the
mongod daemon is running. This mode is intended to be run on a single node without
any distribution and can be used until a database gets to big for a single node. MongoDB
tries to provide a good performance even on single node in contrast to systems like
Cassandra, which are not optimized for single machine clusters. The other mode is the
so-called ”sharded mode”. This mode uses various services to distribute the MongoDB
instance over several nodes. Whereas on CouchDB true distribution is only supported
using external tools, MongoDB supports this out of the box using several components
which are all included in the application package.

3.7.2.1 Sharding

MongoDB divides the keyspace into parts, the so-called ”shards”. Each of these shards
is small enough to be handled by a single server, running the mongod process. If a shard
gets to big or gets to much traffic, the cluster can decided to give parts of the keyspace
to another shard and so balance the traffic. This resharding happens in background

18http://www.mongodb.org
19An ad serving service, today owned by Google, see http://en.wikipedia.org/wiki/DoubleClick
20A source code hosting http://www.github.com
21A open source project hosting, see http://www.sf.net

36

http://www.mongodb.org
http://en.wikipedia.org/wiki/DoubleClick
http://www.github.com
http://www.sf.net

shard 1 shard 2

mongod

mongod

mongod

shard 3

mongod

mongod

mongod

Config Servers

replication

mongod

mongod

mongod

config-mongod

config-mongod

config-mongod
synchronous
replication

mongos mongos ...
Proxies

Client

MongoDB Cluster

Figure 3.7: The keyspace is divided into three shards: Each shard is handled by three
servers, where each server holds the whole shard. The config servers store the
location and size of each shard. Proxies forward requests to the right nodes in
each shard and return the answers to the clients. Clients only communicate
with the proxies using the same protocol as a stand alone MongoDB.
According to Chodorow [2011].

and is handled by the shard-nodes it self. For availability-reasons, a shard is not only
stored on one node but instead replicated onto multiple nodes. Still each node stores the
complete shard. For data exchange between the copies, a replication algorithm is used.
Depending on the replication setting involved (see 3.7.3), MongoDB can only guarantee
eventual consistency.

3.7.2.2 Config Servers

Config Servers, which run the config-mongod process, are used to store the key ranges
which are stored in each shard. They also hold the information where each shard is
stored. Because of the importance of correct information, there is not only a sole config
server but this information is stored on multiple nodes. They synchronize using a special
two phase commit protocol which ensures, that the data is always in sync between the
config servers. If a config server fails, the configuration switches over to read only mode
until all configuration nodes are available again. This only affects the configuration, the

37

cluster itself can still operate as normal except that no resharding can happen until the
config servers are up again.

3.7.2.3 Proxies

Multiple proxies can be installed which provide the interface to the cluster for the client.
These mongos processes are completely stateless: Upon start-up they retrieve the shard
information from the config servers. They forward each request to the appropriate node
in a shard. If a node does not respond, the proxy marks the node as dead in the
configuration and asks another replica in the shard. The interface which is provided by
the proxies is the same as the one provided by a single mongod process. Because of this,
a stand-alone MongoDB and a cluster can be used in the same way. Multiple proxies
can be run, although due to the lightweight nature of the design, there is no need for a
huge amount of proxies. If a read query is issued which needs results from more than one
shard, the proxy aggregates the results and provides the client with a unified response.

3.7.2.4 Server Layout

The architecture above is made at process level. Many of these processes can be run
on the same physical hardware node. For example, the configuration servers and shard
servers could be run on the same node. Additionally, the proxies could be installed
directly on the shard machines. Using this aggregation the amount of hardware nodes
needed can be reduced.

3.7.3 User Access

Whenever the user accesses a MongoDB cluster, he can specify how the cluster should
handle write operations. This is similar to the consistency levels provided by Cassandra
(see section 3.1.5.3) and is called WriteConcerns. Using this setting, the developer can
tell for how many successful writes of replicas the proxy should wait, before it returns a
successful requests to the client. Possible settings provided by MongoDB are:

• NORMAL: This is the default mode: The proxy immediately returns after successfully
forwarding the request to all nodes. It does not matter if one or even all servers
fail to write the update to their data store.

• SAFE: Using this mode, the proxy waits for at least one node to successfully retrieve
and store the update in its main memory.

• FSYNC SAFE: Like SAFE but also waits for a successful store on durable memory or
the hard disk.

• REPLICAS SAFE: Waits for at least two nodes to write the request.

• NONE: Does not wait at all, the proxy returns before forwarding the requests.

38

3.7.4 Scaling Mechanisms

There are multiple possibilities to scale a MongoDB cluster, most of them involve adding
servers:

• Adding sharding servers: By adding new sharding servers, two things can
be accomplished: If the shard count is not changed, the replication count can
be increased. This allows more nodes to fail before a shard gets unavailable.
Alternatively the shard count can be increased. This reduces load from each shard
and so each other sharding server and increases throughput.

• Adding config servers: Adding config servers does not increase performance. In
fact, due to the protocol involved, the performance decreases if more configuration
servers are added. As the configuration data is very important for the operation
of a MongoDB cluster, it still makes sense to add further config server to increase
availability.

• Adding proxies: Depending on the workload of the cluster, the proxies might get
a bottleneck. This can especially happen if many range queries are issued which
involve a lot of aggregation work by the proxies. This bottleneck can be avoided
if more proxies are added to the cluster.

• Tuning consistency: Using the WriteConcerns, the developer can choose be-
tween performance and consistency.

3.8 Membase

The Membase22 [Couchbase, 2010] project was started as a joined venture between North-
Scale and Zynga. Zynga is a developer of browser games, especially for social networks.
In this context they needed a fast and reliable data store which was able to handle
thousands of requests. As these games are typically very write heavy, focus was made
to optimize the data store for write throughput. NorthScale on the other hand already
wrote a cache software named ”memcached”. This software was in wide use and the sim-
ple protocol was implemented in many programming languages and is well understood.
The project was started in 2009 and a memcached compatible system was created, that
added many features to the simple cache which made a true data store out of memcached.
It is written in a mix of C, C++ and Erlang with some parts written in Python.

3.8.1 Data Model

Due to its memcached origins, Membase supports a simple key-value data model: Data
can be saved to the system by using a unique key and any data, binary or string, can
be assigned to that key. When writing to a key a second time, the value is updated.
It is up to the developer or a additional library to structure the data which should be

22http://www.membase.org

39

http://www.membase.org

saved in the database. Membase supports multiple pluggable storage engines which are
optimized for different workloads.

3.8.2 System Architecture

... 4096 times1 2 3

vBucket

Keyspace

Node 1

1Master

3Replica

Node 2

Node 3

1Replica

3Master

2Master

2Replica

MemBase

Figure 3.8: Distribution in Membase: The
keyspace is partitioned into
4096 vBuckets. Each of these
buckets has a master server
and may have multiple repli-
cas. The master of each
vBucket forwards updates to
all replicas in a synchronous
way (filled lines). A vBucket
map stores which node stores
which vBuckets (dotted lines).
This map is saved on all nodes
and must be retrieved by the
client to know which node must
be contacted.

The keyspace is divided into 4096 so-called vBuckets. This means that each key is
assigned to exactly one of these vBuckets. The assignment is static and done using
a consistent hashing approach [Karger et al., 1997], so each client can calculate which
vBucket holds the key it requests.
A Membase cluster consists of many equal nodes. None of them is a designated master
although a master slave protocol is involved which is described later on. Each vBucket
always has one master server. This node is responsible for accepting requests. Additional
copies will be stored on other nodes. The amount of copies which exist of each vBucket
can be specified. The assignment, which nodes stores which vBuckets is called the
”vBucket Map”. Updates to the map are done using a synchronous two phase commit
protocol.
A client will try to retrieve a vBucket map prior to any request. This map can be cached
in the client application. The client then tries to contact the master server of the vBucket
it wants to write to. If the contacted server is not the master server anymore (perhaps
due to reorganisation), the client simply pulls a new up to date copy of the vBucket
map and then contacts the correct server. The client then read or writes to the master
server. If the request is a read request, the answer is provided from the local memory of

40

the master server. A write request is forwarded to all server which hold a replica of the
vBucket modified. This is done in a synchronous way, so that the operation can only be
successful if all replicas are modified. Because of this replication method, Membase is
always consistent, no out dated copies can exist.
Membase supports rebalancing out of the box: vBuckets can be moved from one node
to another without influence on the cluster operation. The rebalancing can even move
the master node of a vBucket.
Each Membase node runs two processes, the ”Data Manager”, which handles the read
and write requests issued by the clients and the ”Cluster Manager”, which manages the
replication and detects and handles the failures of other nodes.

3.8.3 Handling Failures

All nodes storing a vBucket monitor each other using a watch dog protocol. If a server
detects, that the master of the vBucket has failed, the failover mechanism comes into
play. This mechanism first chooses a new master. This new master is one of the servers
which hold a replica of the vBucket, so this node can take over the master functionality
at once without any resynchronization. The new master is saved in the vBucket map on
all other nodes. Additionally it is saved that the old master has failed. If the old master
should start again, it has to resynchronize all data before it can return to the cluster
and serve as a replica there. If a client would contact the node which previously failed
and still contains out dated data the access would be denied and the client would try to
find out the new master of the vBucket. While the new master is elected and broadcast
using the vBucket map, all access to the vBucket will fail. The remaining buckets still
stay accessible.
This architecture was chosen, because the developers think, that while inconsistencies is
a problem all the time and should be avoided, node failures are only a temporal problems
which can be handled. The value of the approach is dependent upon the requirements
in consistency and availability.

3.9 Additional systems

In addition to the systems and implementation explained above, two other interesting
system have been published which might get further attention in future. Due to the lack
of additional information no detailed analysis can currently be made.

3.9.1 PNUTS

Like many Internet companies, Yahoo23 needed a data store for their growing amount of
data. They wanted a system which could be used as a back end for each of their services
so that application developers didn’t have to think about database issues and trained
people can administrate these servers instead. Out of this need Yahoo created PNUTS

23A web search engine and web portal

41

and published a papers about it [Cooper et al., 2008, 2009]. Except for this released
publication, no further information is available about this system as it was never released
to the public but is only used internaly at Yahoo.
PNUTS chooses the same consistency approach as Dynamo: Data is only eventually
consistent, but the developer can query for the most recent version if he is willing to give
up performance and availability. For each read call, the client can specify which version
it will accept as result: Either any version, even an outdated version, or only the most
recent version, even if this should mean that the client might get no result at all.
PNUTS assigns each key to exactly one node. This node is called the master for that
row. The master can be migrated to adapt to load changes. Every request is redirected
by each node to the master. The master node accepts the request and distributes it to
all replica nodes in asynchronous way. A so-called ”Tablet Controller” saves which nodes
is the master of which row. Using this information, the information can be forwarded
to the right node. Yahoo optimized the system for geographic distribution. This means
that data access must be fast and reliable although the data is distributed over big
distances in different countries.
To implement the replication, a separate service is used. This message broker, called
Yahoo Message Broker (YMB), stores replication data and guarantees the updates will be
delivered whenever a node is online. It also guarantees that the order is preserved which
is important to keep data consistent. Because of the missing additional information, no
further analysis on the replication technologies involved can be done.

3.9.2 Google Megastore

In addition to BigTable (see section 2.2) Google has recently published a second data
store called Megastore [Baker et al., 2011]. It was published because Google thought
that there are to many difficulties for the developer to implement a application on top of
a limited API and loose consistency models which current NoSQL data stores provide.
It can be regarded as a mix between traditional RDMS and NoSQL: For example, Mega-
store needs a defined schema for each table. Nevertheless it supports advanced column
types like arrays which make make it easier to model relationships between rows. Mega-
store also guarantees strong consistency using a Paxos like replication protocol. It guar-
antees ACID within so-called entity groups. These could be a data center for example.
Between these entity groups only loose consistency is provided by Megastore. This en-
ables a performant and consistent view on the database for local operations.
Google has used Megastore for some years in various products where the main use is
Google AppEngine24, a platform for hosting web applications. Currently, no further
specifications of the replication technologies of Megastore are available.

24https://code.google.com/appengine/

42

https://code.google.com/appengine/

4 Comparison

4.1 General Overview

Programming Language License First Release

Apache Cassandra Java Apache License 2 July 2008
Basho Riak Erlang, JavaScript Apache License 2 2009
Project Voldermort Java Apache License 2 Feburary 2009
Apache HBase Java Apache License 2 2007
Redis C New BSD March 2009
CouchDB Erlang, JavaScript Apache License 2 2005
MongoDB C++ GNU AGPL v3.0 Summer 2008
Membase C++, Erlang Apache License 2 2009

Table 4.1: Overview of the system which were examined

In the following sections, the technologies involved in the systems will be compared
and discussed. Prior to this, table 4.1 gives a quick overview of the systems which were
explained previously.

Replication Fragmentation Category

Cassandra X X
Ring (4.2)Riak X X

Project Voldemort X X
HBase by underlying DFS X

Master-Slave (4.3)MongoDB X X
Membase X X
Redis X(unidirectional) using external tools

Replication based (4.4)
CouchDB X(bidirectional) using external tools

Table 4.2: Categorization and features of the systems

The systems discussed above use very different technologies to provide scalability to
the users. The implementations can roughly be groups into three categories which share
the same ideas and properties in regard to scaling techniques, consistency and system
architecture. As the data model of the systems was not considered when making this
categorization, the systems do not share the same data model. The question of data
models is discussed later in chapter 5. Table 4.2 assigns each system to one of these

43

three categories and also shows which distribution technologies are implemented. Each
of these categories will be explained further in the following sections.

4.2 Ring Systems

All of the systems in this category borrow the ring like design from the Dynamo Paper
(see section 2.1). The whole system is decentralized, each node can answer every request
by eventually forwarding the request to the appropriate node. Because each node can
potentially handle a write request, these systems are always available for write requests.
If the most recent version of a document needs to be read, it might be possible that
this request can’t be answered in the presence of failures. So no read availability is
guaranteed.

4.2.1 Node Types Involved

Due to the completely decentralized approach, all nodes are the same, so only one type
of nodes exists.

4.2.2 Implementations

Cassandra (see section 3.1), Riak (see section 3.2) and Project Voldemort (see section
3.3) all borrow their distribution ideas from the Dynamo paper. Apart from this there
are differences in the data model and the actual implementation.

4.2.3 Failure Situation

There is no single point of failure with Dynamo systems. If a node fails, other nodes
still accept write requests and as long as there is at least one replica remaining read
requests can also still be answered. The client must not handle data unavailability, if a
node does not answer within a time frame, the node can simply ask another node for
the data given that enough replicas exist and the client is willing to accept outdated
answers. If the client needs the most recent versions of a row, it might have to wait for
the system to restore. This is why ring systems are always available for writes but not
for reads. If the network partitions, conflicting versions of rows can exist. Upon reading
the developer has to decide how to handle this.

4.2.4 Consistency Model

The ring systems feature tunable consistency. This means that the developer can choose
whether he wants strict consistency or whether eventual consistency is enough. This
makes it possible to configure how much consistency should be given up for an increase
in performance. This can be chosen for every request what makes ring systems very
flexible.

44

4.2.5 Scaling Methods

To scale a system up a simple addition of nodes increases throughput and capacity. The
system rebalances the data to fill the newly added nodes and the overall load is reduced.

4.2.6 Data Access

Each node can be queried for all rows, if the node can’t answer a read request on its own
it gets forwarded. To save this round trip, the client library can cache the information
which node might store a specific row and ask this node.
Ring systems can only support fast range queries if the data is saved ordered on the
ring. This ordering leads into problems because the ring gets unbalanced and so some
nodes get higher load than others. If the rows are randomly distributed on the ring,
then range queries are either slow or impossible.

4.3 Master-Slave Systems

These system have one similarity: Each row is assigned to exactly one slave. This slave
is responsible for answering read and write requests for all rows he is responsible for. So
there is a 1 : 1 mapping between rows and slaves. A master server stores this mapping
so that the clients can query the correct slave. In this systems read and write requests
are handled in the same way. This means that they are not specifically optimized for
write requests like the ring systems mentioned above.

4.3.1 Node Types Involved

• A single master keeps the information which row is stored on which node.

• Multiple slaves are responsible for answering requests for specific rows.

• Replicas can be created for each slave: These contain the same information as
the slaves but operate in a standby mode and can take over if a slave fails.

4.3.2 Implementations

• HBase (see section 3.4) supports synchronous replication between replicas using
the underlying DFS.

• MongoDB (see section 3.7) features synchronous and asynchronous replication.
The developer can choose for every request which one to use.

• Membase (see section 3.8) uses synchronous replication for all requests.

45

4.3.3 Failure Situation

• Master: If the master fails, the system can still operate because the clients can
cache the mapping information. A new client connecting can not retrieve the map-
ping information for the master and so can’t operate. Also rows can’t be moved
from one client to another until a new master has been started. Some implementa-
tions support multiple copies of the master, but as all existing masters synchronize
using a synchronous protocol, adding more masters makes write operations to the
mapping (not to the rows) slower.

– HBase: Only a single master can operate at the same time, but since ver-
sion 0.20 multiple standby masters can exist which elect a new master using
ZooKeeper in the case of a failure. Until this master election has been done,
no client can retrieve the mapping information.

– MongoDB: Multiple config servers can be created to avoid availability prob-
lems.

– Membase: Each node holds the mapping information, so there is actually no
single point of failure for the master at Membase. The mapping information
is always available.

• Slave: Replicas can take over after a short downtime. During this time, the
mapping in the master is changed and the clients must update this information.
The downtime must be handled by the clients by delaying their requests until a
new slave has taken over operation.

Network partitions do not have direct effects on master-slave systems: Because each row
only is served by one slave, network partitions simply make some rows unreachable for
clients and so preventing every access to these rows.

4.3.4 Consistency Model

Master-slave systems feature strict consistency: Because one specific node is responsible
for all requests, no inconsistencies can occur. For the replicas, synchronous replication
is used, so no inconsistencies can occur here either. The developer has no choice on this
consistency model, as a result he must design his application so that it can handle node
failures.

4.3.5 Scaling Methods

Adding additional nodes reduces the load on each slave because the slaves have to handle
less data. Although the overall throughput increases, it is not possible to raise the
throughput for operations on a specific node because there is always only one server
responsible for serving this row. Node additions also help if the existing nodes can not
handle the data because of its amount.

46

4.3.6 Data Access

Clients first query the master for the slave which handles the row the client wants to
access. In a second step, the client directly communicates with this slave. For faster
access the clients can cache the information which slave is responsible.
Depending on the implementation range queries tend to be very fast because each slaves
handles a large ordered set of nodes. Within these sets ordered queries are very fast.

4.4 Replication Based Systems

All these systems use replication between their nodes. They also do not support frag-
mentation, consequently there is no need to store mapping between rows and nodes.
All nodes involved in the system store all rows and exchange the updates using a asyn-
chronous replication protocol. Depending on the replication scheme involved only a
single node can be written or all nodes accept write requests.

4.4.1 Node Types Involved

The type of nodes involved depends on the replication scheme used: If all nodes can
replicate from each other (bidirectional replication) then all nodes can be the same. If
only unidirectional replication is supported, a tree like structure must the built with a
single master at the root where all nodes at least indirectly replicate from.

4.4.2 Implementations

• CouchDB (see section 3.6) supports bidirectional replication which makes it pos-
sible that all nodes accept writes.

• Redis (see section 3.5) only supports unidirectional replication so that only a
single master can be written, all other nodes are read only.

4.4.3 Failure Situation

If bidirectional replication is supported, all nodes can be queried for each row. This
means that a node outage does not affect the availability of the system, as long as
the clients can ask another node for the information. If a master exists due to the
unidirectional replication, the system gets unavailable for write requests if this node
goes down. By using a external system, a new master could be elected although this is
not supported by Redis directly.

4.4.4 Consistency Model

Because of the asynchronous nature of replication, some nodes can contain old replicas.
This can even happen without any failures simply due to the network and replication
latency. Because of this fact, these systems can only guarantee eventual consistency. If

47

a specific master exists where all write requests go to, then this node can be queried for
up-to-date information.

4.4.5 Scaling Methods

Adding nodes to a replication based system can not increase the capacity it can handle
because each node holds all the data. Nevertheless the addition of nodes makes sense
because it increases the throughput of read requests as they can be distributed onto
more nodes. In case of bidirectional replicating systems, the write performance can be
increased as well by adding more nodes.

4.4.6 Data Access

As described above, depending on the implementation, the client can only issue write
requests to one node. Reads operations are handled by every node.
Range queries are always fast because each node stores all information.

4.5 Summary of the Categorization

To summarize the categorization and comparison, table 4.3 gives a short overview of the
differences between the categories which were discussed. In regards to the consistency
models involved, figure 4.1 puts the categories on a scale between strict and eventual
consistency. Nevertheless it should be clear that there could exist other tunable con-
sistent systems because this concept could be implemented in other systems and other
structures than a ring.

Ring Master-Slave Replication Based

Single Point Of Failure none master and slaves unidirectional: the
master
otherwise: none

Consistency Model tunable consis-
tency

strict consistency eventual consistency

Availability write: always
available
read: maybe un-
available

maybe unavail-
able

unidirectional:
Maybe unavailble
bidirectional: always
available

Data Access range scans make
no sense (if ran-
domly placed)

range scans fast
(same slave)

range scans fast (all
data available)

Table 4.3: Differences of the categories which have been discussed above

48

Strict Consistency Eventual Consistent

Tunable Consistency
Consistency:

Category: Master-Slave Replication Based

Ring Systems

Figure 4.1: The categories introduced directly correlate with the consistency models they
implement if put on a scale between strict consistency on the one side and
eventual consistency on the other.

49

5 Use-Cases

When it comes to the decision which NoSQL Database System to choose for a specific
use case, multiple factors have to be taken into account. Like on every other system
decision the knowledge of the developers is important. In this section some points of the
real world use of the database systems presented above will be discussed.

5.1 Simplest Setup

When starting with a data store, it might be important how simple it is to set up the
cluster and get a running version. There is a huge difference in the data stores discussed
above.
Some of them, namely MongoDB, Redis and CouchDB can be run on a single node.
Setting up simply involves starting a process without any configuration which is related
to distribution. These systems are developed to be used on single node setups. If during
the later development process distribution features are needed, they can be switched on
or added then. This initial scaling might involve code changes to add fragmentation
algorithms.
Other systems like HBase are much more difficult to set up because distribution features
need to be configured from the beginning and many components need to work together
and thus be setup up correctly. Because these systems are not designed to be run on a
single node, the initial starting is much more difficult.
All ring based systems like Cassandra can started on a single node and do not need
a extensive setup up. Because every node in the cluster will behave the same, a later
addition of nodes for deployment will not involve a change in the system which was
developed. Nevertheless these implementations are not optimized for single node setups
so performance will suffer.

5.2 Data Model

Although this thesis focuses on the distribution technologies, the data model plays an
important role for the developer. Table 5.1 helps to decide the distribution category and
the data model.

5.3 Consistency

Before deciding which NoSQL system should be used, it should be evaluated which
consistency model fits best. It should be clear that higher consistency levels like strict

50

Column-Oriented Document-Oriented Schemaless

Ring Cassandra Riak, Project Voldemort
Master-Slave HBase MongoDB Membase
Replication based CouchDB Redis

Table 5.1: Systems compared in regard to data models and distribution categories

consistency imply a lower tolerance to failures like discussed above. If strict consistency
is needed for most or every request, systems optimized for this consistency setup like
HBase work better than using ring systems and setting their consistency levels to strict
consistency. This would involve setting the write threshold to n while keeping the read
quorum at 1. This setting leads to the fact that every write request has to be forwarded
and answered by every replica which involves heavy network traffic and thus increases
the latency. In Master-slave systems on the other side, the write is handled by one single
node, the network traffic is reduced and a greater performance can be achieved.
On the other hand, if lower consistency levels are acceptable or desired, ring or replication
based systems are well suited. The big advantage here is that these systems can even
work if failures occur.

5.4 Concurrent Access

There is a fundamental difference in the handling of concurrent accesses from multiple
clients on the same row in the NoSQL systems. Although all systems support this access
pattern, the performance is different:
Ring systems run into problems if at the same time many clients write to the same
row and the row should be returned in a consistent state. Because the updates can be
distributed over the network, even in different data centers, the time needed to reconcile
all the conflicting updates is very high.
On the other hand, master-slave systems do not have these problems because all clients
access the same slave and the data stored there is always consistent. This advantage is
also a disadvantage because this slave can get a bottleneck.
Because of this difference, ring systems are better suited if only a small number of clients
concurrently write to the same row. This scenario is typical for private user data in web
systems: For example the cart in a online shop is only modified by the client the cart
belongs to. Master-slave systems have advantages if it comes to many clients writing to
the same row like it is the case for bulk processing systems.

51

6 Summary

This thesis showed that there a many systems which can help developers to handle
large amounts of information while still retaining performant access, durability and
availability. To achieve this, the users of those systems must be willing to give up
some of the feature traditional database systems have.
The categorization of the systems in the three categories helps to make a decision in two
steps: First the developer can select one of these categories and then further examine
the systems in this category and their differences. Nevertheless, it is not clear whether
other systems not discussed above fit into this categorization or new categories must be
created. As the market of NoSQL systems is in a static flux due to its innovative nature,
it is likely that new products will be created in future with new ideas and solutions to
the problems of large scale databases.
If a shift from traditional systems to NoSQL systems is discussed, not only the technology
side must be evaluated but the availability of people with knowledge is also important.
Long established traditional systems might have a larger user base and might be tested
heavier.

6.1 Further Work

Because of the limited focus of this work, many points have been left out or were not
discussed fully:

• A performance evaluation of the systems and categories could help to decide which
systems perform better under which workloads. The categorization above can help
to decide if a comparison between systems makes sense.

• Replication technologies are not the only distinguishing features of NoSQL database
systems: A comparison of the data models (see section 5.2) would help to evaluate
the advantages and disadvantages in regards to special use cases.

• Because of the huge market and the limited time some systems were not discussed
in this thesis. Adding more systems could show if the categorization is good enough
to handle these implementations.

52

References

J.C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive Guide. Oreilly &
Associates Inc, 2010. ISBN 0596155891.

Jason Baker, Chris Bondc, James C. Corbett, J. J. Furman, Andrey Khorlin, James
Larson, Jean M. Léon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megas-
tore: Providing Scalable, Highly Available Storage for Interactive Services. In Gerhard
Weikum, Joseph Hellerstein, and Michael Stonebraker, editors, Conference on Inno-
vative Data Systems Research (CIDR), pages 223–234, January 2011.

Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th symposium on Operating systems design and implementation,
OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association. ISBN
1-931971-47-1. URL http://portal.acm.org/citation.cfm?id=1298455.1298487.

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, PODC ’07, pages 398–407, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-616-5. doi: 10.1145/1281100.1281103.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a
distributed storage system for structured data. In Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and Implementation - Volume 7, page 15, Berke-
ley, CA, USA, 2006. USENIX Association. URL http://portal.acm.org/citation.

cfm?id=1267308.1267323.

Kristina Chodorow. Sharding Introduction, January 2011. URL http://www.mongodb.

org/display/DOCS/Sharding+Introduction.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288, 2008. doi:
10.1145/1454159.1454167.

Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler, P. P. S.
Narayan, Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Silberstein,
Utkarsh Srivastava, and Raymie Stata. Building a Cloud for Yahoo! IEEE Data Eng.
Bull., 32(1):36–43, 2009.

53

http://portal.acm.org/citation.cfm?id=1298455.1298487
http://portal.acm.org/citation.cfm?id=1267308.1267323
http://portal.acm.org/citation.cfm?id=1267308.1267323
http://www.mongodb.org/display/DOCS/Sharding+Introduction
http://www.mongodb.org/display/DOCS/Sharding+Introduction

Couchbase. Membase unleashed. Technical report, Couchbase, 2010. URL
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/

Membase-Technical-Whitepaper.pdf.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. SIGOPS Oper.
Syst. Rev., 41:205–220, October 2007. ISSN 0163-5980. doi: 10.1145/1323293.1294281.

M. Dirolf and K. Chodorow. MongoDB: The Definitive Guide. O’Reilly Media, Inc.,
2010. ISBN 1449381561.

Eric Evans. NOSQL 2009, May 2009. URL http://blog.sym-link.com/2009/05/12/

nosql_2009.html.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
In Proceedings of the nineteenth ACM symposium on Operating systems principles,
SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi:
10.1145/945445.945450.

Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, Inc., 2010. ISBN
1449390412.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper:
wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association. URL http://portal.acm.org/

citation.cfm?id=1855840.1855851.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the World Wide Web. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, STOC ’97, pages 654–663, New
York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi: 10.1145/258533.258660.

A. Khetrapal and V. Ganesh. HBase and Hypertable for large scale distributed storage
systems. Dept. of Computer Science, Purdue University, 2008.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44:35–40, April 2010. ISSN 0163-5980. doi: 10.
1145/1773912.1773922.

L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

Leslie Lamport. Time clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 21:558–565, July 1978. ISSN 0001-0782. doi:
10.1145/359545.359563.

54

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Membase-Technical-Whitepaper.pdf
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Membase-Technical-Whitepaper.pdf
http://blog.sym-link.com/2009/05/12/nosql_2009.html
http://blog.sym-link.com/2009/05/12/nosql_2009.html
http://portal.acm.org/citation.cfm?id=1855840.1855851
http://portal.acm.org/citation.cfm?id=1855840.1855851

Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In A Conference on the Theory and Applications of Cryptographic Techniques on Ad-
vances in Cryptology, CRYPTO ’87, pages 369–378, London, UK, 1988. Springer-
Verlag. ISBN 3-540-18796-0. URL http://portal.acm.org/citation.cfm?id=

646752.704751.

B. Clifford Neuman and B. Cli Ord Neuman. Scale in Distributed Systems. In Readings
in Distributed Computing Systems, pages 463–489. IEEE Computer Society Press,
1994.

Salvatore Sanfilippo. Redis Cluster, 2010. URL http://redis.io/presentation/

Redis_Cluster.pdf.

Michael Stonebraker. SQL databases v. NoSQL databases. Communications of the ACM,
53(4):10–11, 2010. doi: 10.1145/1721654.1721659.

Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, Jan-
uary 2009. ISSN 0001-0782. doi: 10.1145/1435417.1435432.

Tom White. Hadoop: the definitive guide : [storage and analysis at internet scale].
OReilly, Beijing, 2. ed., [rev. and updated] edition, 2011. ISBN 978-1-449-38973-4 ;
1-449-38973-2.

55

http://portal.acm.org/citation.cfm?id=646752.704751
http://portal.acm.org/citation.cfm?id=646752.704751
http://redis.io/presentation/Redis_Cluster.pdf
http://redis.io/presentation/Redis_Cluster.pdf

	Introduction
	History of Database Systems
	Structure
	Scalability

	Influential papers
	Amazon Dynamo
	Design Considerations
	System Design
	Replication Design
	Operation Design
	Handling Failures

	Google BigTable
	Design Considerations
	Existing Components
	BigTable Architecture
	Handling Failures

	Implementations
	Apache Cassandra
	Design Considerations
	Data Schema
	Typical Use Cases
	System Design
	Scaling Mechanisms and Consistency

	Riak
	Data Model
	System Design

	Project Voldemort
	HBase
	Subcomponents
	HBase Architecture
	Scaling Mechanisms
	Consistency Guarantees

	Redis
	Scaling Techniques

	CouchDB
	Data Model
	System Design
	Replication
	Scaling Mechanisms

	MongoDB
	Data Design
	System Architecture
	User Access
	Scaling Mechanisms

	Membase
	Data Model
	System Architecture
	Handling Failures

	Additional systems
	PNUTS
	Google Megastore

	Comparison
	General Overview
	Ring Systems
	Node Types Involved
	Implementations
	Failure Situation
	Consistency Model
	Scaling Methods
	Data Access

	Master-Slave Systems
	Node Types Involved
	Implementations
	Failure Situation
	Consistency Model
	Scaling Methods
	Data Access

	Replication Based Systems
	Node Types Involved
	Implementations
	Failure Situation
	Consistency Model
	Scaling Methods
	Data Access

	Summary of the Categorization

	Use-Cases
	Simplest Setup
	Data Model
	Consistency
	Concurrent Access

	Summary
	Further Work

	References

